Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171696, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485012

RESUMO

Microrefugia, defined as small areas maintaining populations of species outside their range margins during environmental extremes, are increasingly recognized for their role in conserving species in the face of climate change. Understanding their microclimatic dynamics becomes crucial with global warming leading to severe temperature and precipitation changes. This study investigates the phenomenon of short-term climatic decoupling within microrefugia and its implications for plant persistence in the Mediterranean region of southeastern France. We focus on microrefugia's ability to climatically disconnect from macroclimatic trends, examining temperature and Vapor Pressure Deficit (VPD) dynamics in microrefugia, adjacent control plots, and weather stations. Our study encompasses both "normal" conditions and heatwave episodes to explore the role of microrefugia as thermal and moisture insulators during extreme events. Landscape attributes such as relative elevation, solar radiation, distance to streams, and vegetation height are investigated for their contribution to short-term decoupling. Our results demonstrate that microrefugia exhibit notable decoupling from macroclimatic trends. This effect is maintained during heatwaves, underscoring microrefugia's vital role in responding to climatic extremes. Importantly, microrefugia maintain lower VPD levels than their surroundings outside and during heatwaves, potentially mitigating water stress for plants. This study advances our understanding of microclimate dynamics within microrefugia and underscores their ecological importance for plant persistence in a changing climate. As heatwaves become more frequent and severe, our findings provide insights into the role of microrefugia in buffering but also decoupling against extreme climatic events and, more generally, against climate warming. This knowledge emphasizes the need to detect and protect existing microrefugia, as they can be integrated into conservation strategies and climate change adaptation plans.

2.
J Hazard Mater ; 465: 133093, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056254

RESUMO

Nuclear facilities continue to be developed to help meet global energy demands while reducing fossil fuel use. However, an incident during the dismantling of these facilities could accidentally release tritiated particles (e.g. stainless steel) into the environment. Herein, we investigated the environmental dosimetry, fate, and impact of tritiated stainless steel (nano)particles (1 mg.L-1 particles and 1 MBq.L-1 tritium) using indoor freshwater aquatic mesocosms to mimic a pond ecosystem. The tritium (bio)distribution and particle fate and (bio)transformation were monitored in the different environmental compartments over 4 weeks using beta counting and chemical analysis. Impacts on picoplanktonic and picobenthic communities, and the benthic freshwater snail, Anisus vortex, were assessed as indicators of environmental health. Following contamination, some tritium (∼16%) desorbed into the water column while the particles rapidly settled onto the sediment. After 4 weeks, the particles and the majority of the tritium (>80%) had accumulated in the sediment, indicating a high exposure of the benthic ecological niche. Indeed, the benthic grazers presented significant behavioral changes despite low steel uptake (<0.01%). These results provide knowledge on the potential environmental impacts of incidental tritiated (nano)particles, which will allow for improved hazard and risk management.


Assuntos
Ecossistema , Aço Inoxidável , Trítio , Água Doce , Meio Ambiente
3.
Pest Manag Sci ; 71(2): 189-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24687625

RESUMO

BACKGROUND: Black rats, Rattus rattus, and mat-forming iceplants, Carpobrotus aff. acinaciformis and Carpobrotus edulis, are pervasive pests on Mediterranean islands. Their cumulative impacts on native biotas alter the functioning of island ecosystems and threaten biodiversity. A report is given here of the first attempt to eradicate both taxa from a protected nature reserve in south-eastern France (Bagaud Island). In order to minimise unwanted hazardous outcomes and produce scientific knowledge, the operations were embedded in a four-step strategy including initial site assessment, planning, restoration and monitoring. RESULTS: Trapping, which resulted in the removal of 1923 rats in 21 045 trap-nights, made it possible to eliminate a substantial proportion of the resident rat population and to reduce the amount of rodenticide delivered in the second stage of the operation. Forty tons of Carpobrotus spp. were manually uprooted from a total area of 18 000 m(2) ; yet careful monitoring over a decade is still required to prevent germinations from the seed bank. CONCLUSION: Two years after the beginning of the interventions, both eradication operations are still ongoing. Biosecurity measures have been implemented to reduce reinvasion risks of both taxa. With the long-term monitoring of various native plants and animals, Bagaud Island will become a reference study site for scientific purposes.


Assuntos
Aizoaceae , Espécies Introduzidas , Controle de Pragas , Ratos , Controle de Plantas Daninhas , Animais , França , Ilhas do Mediterrâneo , Mesembryanthemum
4.
Sci Rep ; 4: 5608, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25001877

RESUMO

Physical-chemists, (micro)biologists, and ecologists need to conduct meaningful experiments to study the environmental risk of engineered nanomaterials with access to relevant mechanistic data across several spatial and temporal scales. Indoor aquatic mesocosms (60L) that can be tailored to virtually mimic any ecosystem appear as a particularly well-suited device. Here, this concept is illustrated by a pilot study aimed at assessing the distribution of a CeO2-based nanomaterial within our system at low concentration (1.5 mg/L). Physico-chemical as well as microbiological parameters took two weeks to equilibrate. These parameters were found to be reproducible across the 9-mesocosm setup over a 45-day period of time. Recovery mass balances of 115 ± 18% and 60 ± 30% of the Ce were obtained for the pulse dosing and the chronic dosing, respectively. This demonstrated the relevance of our experimental approach that allows for adequately monitoring the fate and impact of a given nanomaterial.


Assuntos
Bioensaio/instrumentação , Ecossistema , Ambiente Controlado , Nanopartículas/toxicidade , Fitoplâncton/fisiologia , Testes de Toxicidade/instrumentação , Reatores Biológicos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais/instrumentação , Nanotecnologia/instrumentação , Fitoplâncton/efeitos dos fármacos , Integração de Sistemas
5.
PLoS One ; 8(8): e71260, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977004

RESUMO

The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L⁻¹ CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L⁻¹ and 91.79 mg.L⁻¹, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L⁻¹ induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L⁻¹ and 100 mg.L⁻¹) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed.


Assuntos
Cério/toxicidade , Daphnia/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Daphnia/fisiologia , Concentração Inibidora 50 , Especificidade da Espécie , Natação , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA