Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400205, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847335

RESUMO

Seven TPP+ new 5-sulfanyl substituted (thiazol-4-yl) phosphonium salts functionalized with different substituents were designed, synthesized, and studied against the NCI-60 human cancer cell lines. Compounds 1-4 show the total average parameters GI50 =0.7-2.7 µm, TGI=7.0-14.6 µm, and LC50=25.2 - 41.8 µm, and compounds 5-7 show GI50=0.3-0.5 µm, TGI= 1.3-3.1 µm, and LC50 =3.6-4.0 µm. The most active compound 7 demonstrated the best anticancer results against leukemia (K-562, GI50=0.141µm; RPMI-8226, GI50=0.143 µm), ovarian cancer (NCI/ADR-RES, GI50=0.142 µm), breast cancer (HS 578T, GI50=0.175 µm; MDA-MB-468, GI50=0.101 µm), melanoma (SK-MEL-5, GI50=0.155 µm), and colon cancer (COLO 205, GI50=0.163 µm). All compounds showed low cytotoxicity against the leukemia subpanel (LC50 >100 µm). The SAR analysis reveals the critical role of the substitutes at the thiazole C2 and C5 positions. Adding the phenyl, p-tolyl, or 4-chlorophenyl group to the C2 position in compounds 5-7 increases anticancer effectiveness. According to the NCI COMPARE analysis, compounds 2-3 showed a very high (r=0.92, 0.81) correlation with morpholino-doxorubicin. Molecular docking-analyzing the antitumor mechanism of compounds 1-4 action demonstrated that the DNA chain is a probable biotarget. The ADMET analysis acknowledges the favorable prognosis using compounds as potential anticancer agents.

2.
ChemMedChem ; 19(5): e202300527, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241069

RESUMO

A novel series of N-(4-cyano-1,3-oxazol-5-yl)sulfonamides have been synthesized and characterized by IR, 1 H NMR, 13 C NMR spectroscopy, elemental analysis and chromato-mass-spectrometry. The anticancer activities of all newly synthesized compounds were evaluated via a single high-dose assay (10 µM) against 60 cancer cell lines by the National Cancer Institute (USA) according to its screening protocol. Among them, compounds 2 and 10 exhibited the highest activity against the 60 cancer cell lines panel in the one-dose assay. Compounds 2 and 10 showed inhibitory activity within the GI50 parameter and in five dose analyses. However, their cytostatic activity was only observed against some cancer cell lines, and cytotoxic concentration was outside the maximum used, i. e., >100 µM. The COMPARE analysis showed that the average graphs of the tested compounds have a moderate positive correlation with compounds with the L-cysteine analog and vinblastine (GI50 ) as well as paclitaxel (TGI), which target microtubules. Therefore, disruption of microtubule formation may be one of the mechanisms of the anticancer activity of the tested compounds, especially since among tubulin inhibitors with antitumor activity, compounds with an oxazole motif are widely represented. Therefore, N-(4-cyano-1,3-oxazol-5-yl)sulfonamides may be promising for further functionalization to obtain more active compounds.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Detecção Precoce de Câncer , Estrutura Molecular , Relação Estrutura-Atividade , Sulfanilamida/farmacologia , Sulfonamidas/química , Humanos
3.
Chem Rec ; 24(2): e202300264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882374

RESUMO

The recyclizations of 5-amino- and 5-hydrazine-1,3-oxazoles mainly with electron-withdrawing group in 4th position are considered. The chemical behavior of these heterocycles is due to the presence of two hidden amide fragments; therefore, the recyclization processes include a stage of nucleophile attack on 2nd or 5th position of the oxazole cycle. When the nitrile group is present in 4th position, it is often involved in the recyclization forming α-aminoazoles. 5-Amino/hydrazine-1,3-oxazoles undergo recyclization both in nucleophilic (amines, hydrazine, thionating agents) and electrophilic medium ((trifluoro)acetic acid, other acylating agents). The numerous types of functionalized heterocycles can be easily obtained with the usage of these recyclizations, such as the derivatives of 3-amino-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole, imidazolidine-2,4-dione, 1H-pyrazole-3,4,5-triamine, 5,6-diamino-2,3-diphenylpyrimidin-4(3H)-one, 2-(2-R-7-oxo-5-(trifluoromethyl)oxazolo[5,4-d]pyrimidin-6(7H)-yl)acetic acid, 2-R-4-(5-R'-1,3,4-oxadiazol-2-yl)oxazol-5-amine, (amino(5-amino-1,3,4-thiadiazol-2-yl)methyl)phosphonate.

4.
RSC Med Chem ; 14(4): 692-699, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122542

RESUMO

A series of 1,3-oxazolo[4,5-d]pyrimidine and 1,3-oxazolo[5,4-d]pyrimidine derivatives were synthesized and functionalized in this study. The obtained compounds were tested against breast cancer cell lines of the NCI subpanel, followed by further analysis using the COMPARE algorithm from the Therapeutics Development Program, NCI. All synthesized derivatives displayed activity against most cell lines in the range of micromolar concentrations in terms of all parameters studied. Oxazolopyrimidine 5 exhibited the highest antitumor activity. A standard COMPARE analysis of the compounds showed that the vectors of the cytotoxic activity of derivatives 10 and 11 displayed a close to very high correlation with tamoxifen, and oxazolopyrimidine 13 displayed a very high correlation with the same drug. Five derivatives (2, 4, 6, 11 and 13) showed a high correlation with aclacinomycin A in the TGI vector. At the same time, compound 1 effectively suppressed ADK in cultured MDA-MB 231 cell lines, indicating that ADK is one of its targets through which it exerts anticancer properties. Based on molecular docking results, the possible binding mode of oxazolopyrimidine 1 to ADK has been suggested.

5.
ChemMedChem ; 18(14): e202300161, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37169720

RESUMO

A novel series of 5-sulfinyl(sulfonyl)-4-arylsulfonyl-substituted 1,3-oxazoles has been synthesized, characterized and subjected to NCI in vitro assessment. Cancer cell lines of all subpanels were most sensitive to 2-{[4-[(4-fluorophenyl)sulfonyl]-2-(2-furyl)-1,3-oxazol-5-yl]sulfinyl}acetamide (3 l). Its antiproliferative and cytotoxic activity averaged over each subpanel was manifested in a very narrow range of concentrations (GI50 : 1.64-1.86 µM, TGI: 3.16-3.81 µM and LC50 : 5.53-7.27 µM), i. e. practically did not depend on the origin of the cancer cell line. The COMPARE matrix using TGI vector showed a high positive correlation of 3 l (r=0.88) with the intercalating agent aclarubicin, which inhibits topoisomerases. The absence in the database of standard agents that have a high correlation with the cytotoxicity of this compound suggests that it may have a unique mechanism of action. According to the results of the docking analysis, the most promising anticancer target for compound 3 l is DNA topoisomerase IIß. The obtained results indicate the anticancer activity of 5-sulfinyl(sulfonyl)-4-arylsulfonyl-substituted 1,3-oxazoles, which may be useful for the development of new anticancer drugs. 2-{[4-[(4-Fluorophenyl)sulfonyl]-2-(2-furyl)-1,3-oxazol-5-yl]sulfinyl}acetamide (3 l), as the most active, can be recommended for further in-depth studies.


Assuntos
Antineoplásicos , Oxazóis , Linhagem Celular Tumoral , Oxazóis/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
6.
Mol Biotechnol ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36709460

RESUMO

Varicella zoster virus (VZV) infection causes severe disease such as chickenpox, shingles, and postherpetic neuralgia, often leading to disability. Reactivation of latent VZV is associated with a decrease in specific cellular immunity in the elderly and in patients with immunodeficiency. However, due to the limited efficacy of existing therapy and the emergence of antiviral resistance, it has become necessary to develop new and effective antiviral drugs for the treatment of diseases caused by VZV, particularly in the setting of opportunistic infections. The goal of this work is to identify potent oxazole derivatives as anti-VZV agents by machine learning, followed by their synthesis and experimental validation. Predictive QSAR models were developed using the Online Chemical Modeling Environment (OCHEM). Data on compounds exhibiting antiviral activity were collected from the ChEMBL and uploaded in the OCHEM database. The predictive ability of the models was tested by cross-validation, giving coefficient of determination q2 = 0.87-0.9. The validation of the models using an external test set proves that the models can be used to predict the antiviral activity of newly designed and known compounds with reasonable accuracy within the applicability domain (q2 = 0.83-0.84). The models were applied to screen a virtual chemical library with expected activity of compounds against VZV. The 7 most promising oxazole derivatives were identified, synthesized, and tested. Two of them showed activity against the VZV Ellen strain upon primary in vitro antiviral screening. The synthesized compounds may represent an interesting starting point for further development of the oxazole derivatives against VZV. The developed models are available online at OCHEM http://ochem.eu/article/145978 and can be used to virtually screen for potential compounds with anti-VZV activity.

7.
ChemMedChem ; 17(20): e202200319, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36037305

RESUMO

A novel series of 1,3-oxazol-4-yltriphenylphosphonium salts has been synthesized and functionalized. Oxazole derivatives were subjected to NCI in vitro assessment. Seven most active derivatives have been selected for five-dose assay. Among them, compounds 9 ([2-(4-methylphenyl)-5-[(4-methylphenyl)sulfanyl]-1,3-oxazol-4-yl]triphenylphosphonium perchlorate), 1 ([5-(4-methylphenyl)amino]-2-phenyl-1,3-oxazol-4-yl]triphenylphosphonium perchlorate) and 4 ([5-phenyl-2-[(4-methylphenyl)amino]-1,3-oxazol-4-yl]triphenylphosphonium perchlorate) were the most active against all tested cancer subpanels. Statistical analysis of the total panel data showed average values of parameters of anticancer activity in the range of 0.3-1.1 µM (GI50 ), 1.2-2.5 µM (TGI) and 5-6 µM (LC50 ). It was found that the presence of phenyl or 4-methylphenyl groups at C(2) and C(5) in the oxazole ring is of critical importance for the manifestation of the anticancer activity. Matrix COMPARE analysis using LC50 vector showed a high positive correlation of compound 9 with standard anticancer agents that can directly disrupt mitochondrial function, causing programmed death of cancer cells. The obtained results indicate the anticancer activity of 1,3-oxazol-4-ylphosphonium salts, which could be useful for developing new anticancer drugs. The most active of them can be recommended for further in-depth studies and synthesis of new derivatives with antitumor activity on their basis.


Assuntos
Antineoplásicos , Sais , Sais/farmacologia , Percloratos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Oxazóis/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
8.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453241

RESUMO

A previously developed model to predict antibacterial activity of ionic liquids against a resistant A. baumannii strain was used to assess activity of phosphonium ionic liquids. Their antioxidant potential was additionally evaluated with newly developed models, which were based on public data. The accuracy of the models was rigorously evaluated using cross-validation as well as test set prediction. Six alkyl triphenylphosphonium and alkyl tributylphosphonium bromides with the C8, C10, and C12 alkyl chain length were synthesized and tested in vitro. Experimental studies confirmed their activity against A. baumannii as well as showed pronounced antioxidant properties. These results suggest that phosphonium ionic liquids could be promising lead structures against A. baumannii.

9.
Curr Comput Aided Drug Des ; 18(2): 95-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379159

RESUMO

BACKGROUND: The fragment-to-fragment approach for the estimation of the biological affinity of the pharmacophores with biologically active molecules has been proposed. It is the next step in the elaboration of molecular docking and using the quantum-chemical methods for the complex modeling of pharmacophores with biomolecule fragments. METHODS: The parameter φ 0 was used to estimate the contribution of π-electron interactions in biological affinity. It is directly related to the position of the frontier levels and reflects the donor-acceptor properties of the pharmacophores and stabilization energy of the [Pharm꞉BioM] complex Results: By using quantum-chemical calculations, it was found that the stacking interaction of oxazoles with phenylalanine is 7-11 kcal/mol, while the energy of hydrogen bonding of oxazoles with the amino group of lysine is 5-9 kcal/mol. The fragment-to-fragment approach can be applied for the investigation of the dependence of biological affinity on the electronic structure of pharmacophores.c Conclusion: The founded quantum-chemical regularities are confirmed with the structure-activity relationships of substituted oxazoles.


Assuntos
Elétrons , Oxazóis , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Oxazóis/química , Oxazóis/farmacologia , Relação Estrutura-Atividade
10.
Mol Divers ; 26(2): 1115-1128, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34086156

RESUMO

An efficient and practical synthetic procedure for libraries of diversified 1,2-dihydrochromeno[2,3-c]pyrrole-3,9-diones using a multicomponent process is presented. A convenient synthetic procedure for obtaining functionalized 3-(2-hydroxyphenyl)-4,5-dihydropyrrolo[3,4-c]pyrazol-6(1H)-ones via ring-opening strategy has also been developed. This protocol was found to be compatible with a wide range of substituents and paves the way for the practical synthesis of title compounds with a broad range of substituents under mild condition. The products can be easily isolated by crystallization without the use of chromatography.


Assuntos
Pirróis , Estrutura Molecular
11.
J Comput Aided Mol Des ; 35(12): 1177-1187, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766232

RESUMO

The problem of designing new antiviral drugs against Human Cytomegalovirus (HCMV) was addressed using the Online Chemical Modeling Environment (OCHEM). Data on compound antiviral activity to human organisms were collected from the literature and uploaded in the OCHEM database. The predictive ability of the regression models was tested through cross-validation, giving coefficient of determination q2 = 0.71-0.76. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds with reasonable accuracy within the applicability domain (q2 = 0.70-0.74). The models were applied to screen a virtual chemical library of imidazole derivatives, which was designed to have antiviral activity. The six most promising compounds were identified, synthesized and their antiviral activities against HCMV were evaluated in vitro. However, only two of them showed some activity against the HCMV AD169 strain.


Assuntos
Citomegalovirus , Relação Quantitativa Estrutura-Atividade , Antibacterianos/química , Antivirais/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Aprendizado de Máquina
12.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834114

RESUMO

A series of benzenesulfonamides incorporating pyrazole- and pyridazinecarboxamides decorated with several bulky moieties has been obtained by original procedures. The new derivatives were investigated for the inhibition of four physiologically crucial human carbonic anhydrase (hCA, EC 4.2.2.1.1) isoforms, hCA I and II (cytosolic enzymes) as well as hCA IX and XII (transmembrane, tumor-associated isoforms). Examples of isoform-selective inhibitors were obtained for all four enzymes investigated here, and a computational approach was employed for explaining the observed selectivity, which may be useful in drug design approaches for obtaining inhibitors with pharmacological applications useful as antiglaucoma, diuretic, antitumor or anti-cerebral ischemia drugs.


Assuntos
Anidrases Carbônicas , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/enzimologia , Sulfonamidas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Pirazóis/química , Pirazóis/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Benzenossulfonamidas
13.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451924

RESUMO

Carbonic Anhydrases (CAs) are ubiquitous metalloenzymes involved in several disease conditions. There are 15 human CA (hCA) isoforms and their high homology represents a challenge for the discovery of potential drugs devoid of off-target side effects. For this reason, many synthetic and pharmacologic research efforts are underway to achieve the full pharmacological potential of CA modulators of activity. We report here a novel series of sulfanilamide derivatives containing heterocyclic carboxamide moieties which were evaluated as CA inhibitors against the physiological relevant isoforms hCA I, II, IX, and XII. Some of them showed selectivity toward isoform hCA II and hCA XII. Molecular docking was performed for some of these compounds on isoforms hCA II and XII to understand the possible interaction with the active site amino acid residues, which rationalized the reported inhibitory activity.

14.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064890

RESUMO

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.


Assuntos
Benzopiranos/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/química , Domínio Catalítico , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
15.
Chem Biol Drug Des ; 98(4): 561-581, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34148293

RESUMO

The oxazole and pyrimidine rings are widely displayed in natural products and synthetic molecules. They are known as the prime skeletons for drug discovery. On the account of structural and chemical diversity, oxazole and pyrimidine-based molecules, as central scaffolds, not only provide different types of interactions with various receptors and enzymes, showing broad biological activities, but also occupy a core position in medicinal chemistry, showing their importance for development and discovery of newer potential therapeutic agents (Curr Top Med Chem, 16, 2016, 3133; Int J Pharm Pharm Sci, 8, 2016, 8; BMC Chem, 13, 2019, 44). For a long time, relatively little attention has been paid to their fused rings that are oxazolopyrimidines, whose chemical structure is similar to that of natural purines because probably none of these compounds were found in natural products or their biological activities turned out to be unexpressed (Bull Chem Soc Jpn, 43, 1970, 187). Recently, however, a significant number of studies have been published on the biological properties of oxazolo[5,4-d]pyrimidines, showing their significant activity as agonists and antagonists of signaling pathways involved in the regulation of the cell life cycle, whereas oxazolo[4,5-d]pyrimidines, on the contrary, represent a poorly studied class of compounds. Limited access to this scaffold has resulted in a corresponding lack of biological research (Eur J Organ Chem, 18, 2018, 2148). Actually, oxazolo[5,4-d]pyrimidine is a versatile scaffold used for the design of bioactive ligands against enzymes and receptors. This review focuses on biological targets and associated pathogenetic mechanisms, as well as pathological disorders that can be modified by well-known oxazolopyrimidines that have been proven to date. Many molecular details of these processes are omitted here, which the interested reader will find in the cited literature. This work also does not cover the methods for the synthesis of the oxazolopyrimidines, which are exhaustively described by De Coen et al. (Eur J Organ Chem, 18, 2018, 2148). The review as well does not discuss the structure-activity relationship, which is described in detail in the original works and deliberately, whenever possible, cites not primary sources, but mostly relevant review articles, so that the reader who wants to delve into a particular problem will immediately receive more complete information. It is expected that the information presented in this review will help readers better understand the purpose of the development of oxazolopyrimidines and the possibility of their development as drugs for the treatment of a wide range of diseases.


Assuntos
Antineoplásicos/química , Produtos Biológicos/química , Oxazóis/química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isomerismo , Estrutura Molecular , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptores de Angiotensina/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
16.
Comput Biol Chem ; 90: 107407, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33191110

RESUMO

Natural products as well as their derivatives play a significant role in the discovery of new biologically active compounds in the different areas of our life especially in the field of medicine. The synthesis of compounds produced from natural products including cytisine is one approach for the wider use of natural substances in the development of new drugs. QSAR modeling was used to predict and select of biologically active cytisine-containing 1,3-oxazoles. The eleven most promising compounds were identified, synthesized and tested. The activity of the synthesized compounds was evaluated using the disc diffusion method against C. albicans M 885 (ATCC 10,231) strain and clinical fluconazole-resistant Candida krusei strain. Molecular docking of the most active compounds as potential inhibitors of the Candida spp. glutathione reductase was performed using the AutoDock Vina. The built classification models demonstrated good stability, robustness and predictive power. The eleven cytisine-containing 1,3-oxazoles were synthesized and their activity against Candida spp. was evaluated. Compounds 10, 11 as potential inhibitors of the Candida spp. glutathione reductase demonstrated the high activity against C. albicans M 885 (ATCC 10,231) strain and clinical fluconazole-resistant Candida krusei strain. The studied compounds 10, 11 present the interesting scaffold for further investigation as potential inhibitors of the Candida spp. glutathione reductase with the promising antifungal properties. The developed models are publicly available online at http://ochem.eu/article/120720 and could be used by scientists for design of new more effective drugs.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Glutationa Redutase/antagonistas & inibidores , Simulação de Acoplamento Molecular , Oxazóis/farmacologia , Alcaloides/síntese química , Alcaloides/química , Antifúngicos/síntese química , Antifúngicos/química , Azocinas/síntese química , Azocinas/química , Azocinas/farmacologia , Candida/enzimologia , Glutationa Redutase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Relação Quantitativa Estrutura-Atividade , Quinolizinas/síntese química , Quinolizinas/química , Quinolizinas/farmacologia
17.
Chem Biol Drug Des ; 95(6): 624-630, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32168424

RESUMO

QSAR analysis of a set of previously synthesized phosphonium ionic liquids (PILs) tested against Gram-negative multidrug-resistant clinical isolate Acinetobacter baumannii was done using the Online Chemical Modeling Environment (OCHEM). To overcome the problem of overfitting due to descriptor selection, fivefold cross-validation with variable selection in each step of the model development was applied. The predictive ability of the classification models was tested by cross-validation, giving balanced accuracies (BA) of 76%-82%. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds with a reasonable accuracy within the applicability domain (BA = 83%-89%). The models were applied to screen a virtual chemical library with expected activity of compounds against MDR Acinetobacter baumannii. The eighteen most promising compounds were identified, synthesized, and tested. Biological testing of compounds was performed using the disk diffusion method in Mueller-Hinton agar. All tested molecules demonstrated high anti-A. baumannii activity and different toxicity levels. The developed classification SAR models are freely available online at http://ochem.eu/article/113921 and could be used by scientists for design of new more effective antibiotics.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Líquidos Iônicos/química , Compostos Organofosforados/química , Animais , Antibacterianos/farmacologia , Simulação por Computador , Crustáceos/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana Múltipla , Humanos , Líquidos Iônicos/farmacologia , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade
18.
Curr Drug Discov Technol ; 17(3): 365-375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30973110

RESUMO

BACKGROUND: Tuberculosis (TB) is an infection disease caused by Mycobacterium tuberculosis (Mtb) bacteria. One of the main causes of mortality from TB is the problem of Mtb resistance to known drugs. OBJECTIVE: The goal of this work is to identify potent small molecule anti-TB agents by machine learning, synthesis and biological evaluation. METHODS: The On-line Chemical Database and Modeling Environment (OCHEM) was used to build predictive machine learning models. Seven compounds were synthesized and tested in vitro for their antitubercular activity against H37Rv and resistant Mtb strains. RESULTS: A set of predictive models was built with OCHEM based on a set of previously synthesized isoniazid (INH) derivatives containing a thiazole core and tested against Mtb. The predictive ability of the models was tested by a 5-fold cross-validation, and resulted in balanced accuracies (BA) of 61-78% for the binary classifiers. Test set validation showed that the models could be instrumental in predicting anti- TB activity with a reasonable accuracy (with BA = 67-79 %) within the applicability domain. Seven designed compounds were synthesized and demonstrated activity against both the H37Rv and multidrugresistant (MDR) Mtb strains resistant to rifampicin and isoniazid. According to the acute toxicity evaluation in Daphnia magna neonates, six compounds were classified as moderately toxic (LD50 in the range of 10-100 mg/L) and one as practically harmless (LD50 in the range of 100-1000 mg/L). CONCLUSION: The newly identified compounds may represent a starting point for further development of therapies against Mtb. The developed models are available online at OCHEM http://ochem.eu/article/11 1066 and can be used to virtually screen for potential compounds with anti-TB activity.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Aprendizado de Máquina , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/uso terapêutico , Daphnia , Conjuntos de Dados como Assunto , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Modelos Químicos , Rifampina/farmacologia , Rifampina/uso terapêutico , Testes de Toxicidade Aguda , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
19.
Chem Biodivers ; 16(10): e1900391, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479201

RESUMO

A series of novel 2-oxoimidazolidine derivatives were synthesized and their antiviral activities against BK human polyomavirus type 1 (BKPyV) were evaluated in vitro. Bioassays showed that the synthesized compounds 1-{[(4E)-5-(dichloromethylidene)-2-oxoimidazolidin-4-ylidene]sulfamoyl}piperidine-4-carboxylic acid (5) and N-Cyclobutyl-N'-[(4E)-5-(dichloromethylidene)-2-oxoimidazolidin-4-ylidene]sulfuric diamide (4) exhibited moderate activities against BKPyV (EC50 =5.4 and 5.5 µm, respectively) that are comparable to the standard drug Cidofovir. Compound 5 exhibited the same cytotoxicity in HFF cells and selectivity index (SI50 ) as Cidofovir. The selectivity index of compound 4 is three times less than that of Cidofovir due to the higher toxicity of this compound. Hence, these compounds may be taken as lead compound for further development of novel ant-BKPyV agents.


Assuntos
Antivirais/farmacologia , Vírus BK/efeitos dos fármacos , Cidofovir/farmacologia , Desenho de Fármacos , Imidazolidinas/farmacologia , Antivirais/síntese química , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cidofovir/química , Relação Dose-Resposta a Droga , Humanos , Imidazolidinas/síntese química , Imidazolidinas/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
20.
ACS Comb Sci ; 21(9): 635-642, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31437394

RESUMO

Two protocols for the combinatorial synthesis of 5-(dialkylamino)tetrazoles were developed. The best success rate (67%) was shown by the method that used primary and secondary amines, 2,2,2-trifluoroethylthiocarbamate, and sodium azide as the starting reagents. The key steps included the formation of unsymmetrical thiourea, subsequent alkylation with 1,3-propane sultone and cyclization with azide anion. A 559-member aminotetrazole library was synthesized by this approach; the overall readily accessible (REAL) chemical space covered by the method exceeded 7 million feasible compounds.


Assuntos
Tetrazóis/síntese química , Alquilação , Aminas/química , Azidas/química , Catálise , Ciclização , Estrutura Molecular , Azida Sódica/química , Temperatura , Tiocarbamatos/química , Tiofenos/química , Tioureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA