Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(8): e0320323, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39012149

RESUMO

Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE: We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.


Assuntos
Animais Selvagens , Aves , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Canadá/epidemiologia , Aves/virologia , Animais Selvagens/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Filogenia , Europa (Continente)/epidemiologia , Monitoramento Epidemiológico , Ásia/epidemiologia
2.
J Wildl Dis ; 60(3): 763-768, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38666308

RESUMO

First detected in Atlantic Canada in December 2021, highly pathogenic avian influenza virus (HPAIV) subtype H5N1 clade 2.3.4.4b, A/Goose/Guangdong/1/96 lineage, has caused massive mortality in wild birds and domestic poultry in North America. Swallows (Hirundinidae), abundant in North American agricultural ecosystems, have been proposed as possible (bridge) species for HPAIV transmission between wild and domestic birds. We aimed to seek evidence of the potential role of swallows in bridging AIV infection between wild bird reservoirs and poultry flocks in eastern Canada. During a wide-scale outbreak of HPAIV in wild birds and poultry farms across eastern Canada, 200 samples were collected from swallow breeding sites in the Canadian provinces of New Brunswick, Nova Scotia, Ontario, and Quebec, June-August 2022. Samples came from Barn Swallow (Hirundo rustica; n=142), Tree Swallow (Tachycineta bicolor; n=56), and Cliff Swallow (Petrochelidon pyrrhonota; n=2) nests. All samples tested negative for AIV, suggesting that HPAIV and low pathogenic AIV (LPAIV) strains were probably not circulating widely in swallows during the 2022 breeding season in eastern Canada; thus swallows may present a low risk of transmitting AIV. Within a management context, these findings suggest that removing nests of Barn Swallows, a species at risk in Canada, from the exterior of biosecure domestic poultry facilities may not significantly reduce risks of HPAI transmission to poultry.


Assuntos
Influenza Aviária , Andorinhas , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Andorinhas/virologia , Canadá/epidemiologia , Animais Selvagens
3.
Data Brief ; 37: 107267, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34381854

RESUMO

We report the first functionally-annotated de novo transcriptome assembly for North American flying squirrels (genus Glaucomys). RNA was extracted from tissue samples obtained from two northern flying squirrels and two southern flying squirrels sampled from Ontario, Canada, and sequenced on an Illumina paired-end sequencing platform. We reconstructed 702,228 Glaucomys transcripts using 193,323,120 sequence read pairs and captured sequence homologies, protein domains, and gene function classifications. Introgressive hybridization between northern (Glaucomys sabrinus) and southern flying squirrels (G. volans) has been observed in some areas of North America. However, existing molecular markers lack the resolution to discriminate late-generation introgressants and describe the extent to which hybridization influences the Glaucomys gene pool. These genomic resources can increase the resolution of molecular techniques used to examine the dynamics of the Glaucomys hybrid zone.

4.
PeerJ ; 8: e9617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832267

RESUMO

BACKGROUND: Conservation practitioners are often interested in developing land use plans that increase landscape connectivity, which is defined as the degree to which the landscape facilitates or impedes movement among resource patches. Landscape connectivity is often estimated with a cost surface that indicates the varying costs experienced by an organism in moving across a landscape. True, or absolute costs are rarely known however, and therefore assigning costs to different landscape elements is often a challenge in creating cost surface maps. As such, we consider it important to understand the sensitivity of connectivity estimates to uncertainty in cost estimates. METHODS: We used simulated landscapes to test the sensitivity of current density estimates from circuit theory to varying relative cost values, fragmentation, and number of cost classes (i.e., thematic resolution). Current density is proportional to the probability of use during a random walk. Using Circuitscape software, we simulated electrical current between pairs of nodes to create current density maps. We then measured the correlation of the current density values across scenarios. RESULTS: In general, we found that cost values were highly correlated across scenarios with different cost weights (mean correlation ranged from 0.87 to 0.92). Changing the spatial configuration of landscape elements by varying the degree of fragmentation reduced correlation in current density across maps. We also found that correlations were more variable when the range of cost values in a map was high. DISCUSSION: The low sensitivity of current density estimates to relative cost weights suggests that the measure may be reliable for land use applications even when there is uncertainty about absolute cost values, provided that the user has the costs correctly ranked. This finding should facilitate the use of cost surfaces by conservation practitioners interested in estimating connectivity and planning linkages and corridors.

5.
Mov Ecol ; 5: 21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29043084

RESUMO

BACKGROUND: Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx (Lynx canadensis), American marten (Martes americana), fisher (Pekania pennanti), and southern flying squirrel (Glaucomys volans) to evaluate multi-species genetic connectivity across Ontario, Canada. RESULTS: We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. CONCLUSIONS: Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high current density appear to constrict gene flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA