Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
ACS Nano ; 17(20): 19613-19624, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37715735

RESUMO

Small extracellular vesicles (sEVs) are promising for cell-based cardiac repair after myocardial infarction. These sEVs encapsulate potent cargo, including microRNAs (miRs), within a bilayer membrane that aids sEV uptake when administered to cells. However, despite their efficacy, sEV therapies are limited by inconsistencies in the sEV release from parent cells and variability in cargo encapsulation. Synthetic sEV mimics with artificial bilayer membranes allow for cargo control but suffer poor stability and rapid clearance when administered in vivo. Here, we developed an sEV-like vehicle (ELV) using an electroporation technique, building upon our previously published work, and investigated the potency of delivering electroporated ELVs with pro-angiogenic miR-126 both in vitro and in vivo to a rat model of ischemia-reperfusion. We show that electroporated miR-126+ ELVs improve tube formation parameters when administered to 2D cultures of cardiac endothelial cells and improve both echocardiographic and histological parameters when delivered to a rat left ventricle after ischemia reperfusion injury. This work emphasizes the value of using electroporated ELVs as vehicles for delivery of select miR cargo for cardiac repair.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Ratos , Animais , Células Endoteliais , MicroRNAs/genética , Infarto do Miocárdio/terapia , Isquemia
2.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292906

RESUMO

The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 haploinsufficient embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of PPARγ to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.

3.
Sci Adv ; 9(9): eabo4616, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867699

RESUMO

Small extracellular vesicles (sEVs) play a critical role in cardiac cell therapy by delivering molecular cargo and mediating cellular signaling. Among sEV cargo molecule types, microRNA (miRNA) is particularly potent and highly heterogeneous. However, not all miRNAs in sEV are beneficial. Two previous studies using computational modeling identified miR-192-5p and miR-432-5p as potentially deleterious in cardiac function and repair. Here, we show that knocking down miR-192-5p and miR-432-5p in cardiac c-kit+ cell (CPC)-derived sEVs enhances the therapeutic capabilities of sEVs in vitro and in a rat in vivo model of cardiac ischemia reperfusion. miR-192-5p- and miR-432-5p-depleted CPC-sEVs enhance cardiac function by reducing fibrosis and necrotic inflammatory responses. miR-192-5p-depleted CPC-sEVs also enhance mesenchymal stromal cell-like cell mobilization. Knocking down deleterious miRNAs from sEV could be a promising therapeutic strategy for treatment of chronic myocardial infarction.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Células-Tronco , Coração , Antiarrítmicos , Cardiotônicos
4.
J Cyst Fibros ; 21(6): 967-976, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732550

RESUMO

BACKGROUND: Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS: Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS: Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION: Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.


Assuntos
Fibrose Cística , Criança , Humanos , Receptor de Morte Celular Programada 1 , Pulmão , Inflamação , Bactérias/metabolismo , Biomarcadores/metabolismo , Macrófagos
5.
Methods Mol Biol ; 2485: 269-278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618912

RESUMO

Pediatric cardiac-derived c-kit+ cell therapies represent an innovative approach for cardiac tissue repair that have demonstrated promising improvements in recent studies and offer multiple benefits, such as easy isolation and autologous transplant. However, concerns about failure of engraftment and transient paracrine effects have thus far limited their use. To overcome these issues, an appropriate cell delivery vehicle such as a cardiac extracellular matrix (cECM) hydrogel can be utilized. This naturally derived biomaterial can support embedded cells, allowing for local diffusion of paracrine factors, and provide a healthy microenvironment for optimal cellular function. This protocol focuses on combining cardiac-derived c-kit+ cells and a cECM hydrogel to prepare a minimally invasive, dual therapeutic for in vivo delivery. We also outline a detailed method for ultrasound-guided intramyocardial injection of cell-laden hydrogels in a rodent model. Additional steps for labeling cells with a fluorescent dye for in vivo cell tracking are provided.


Assuntos
Hidrogéis , Roedores , Animais , Criança , Ecocardiografia , Matriz Extracelular , Humanos , Miocárdio
6.
Pediatr Pulmonol ; 57(9): 2189-2198, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637404

RESUMO

BACKGROUND: In this pilot study, we investigated whether induced sputum (IS) could serve as a viable alternative to bronchoalveolar lavage (BAL) and yield robust inflammatory biomarkers in toddlers with cystic fibrosis (CF) featuring minimal structural lung disease. METHODS: We collected IS, BAL (right middle lobe and lingula), and blood, and performed chest computed tomography (CT) scans from 2-year-olds with CF (N = 11), all within a single visit. Inflammatory biomarkers included 20 soluble immune mediators and neutrophil elastase (NE), as well as frequency and phenotype of T cells, monocytes/macrophages, and neutrophils. RESULTS: At the molecular level, nine mediators showed similar levels in IS and BAL (CXCL1, CXCL8, IL-1α, IL-1RA, IL-6, CCL2, CXCL10, M-CSF, VEGF-A), four were higher in IS than in BAL (CXCL5, IL-1ß, CXCL11, TNFSF10), and two were present in IS, but undetectable in BAL (IL-10, IFN-γ). Meanwhile, soluble NE had lower activity in IS than in BAL. At the cellular level, T-cell frequency was lower in IS than in BAL. Monocytes/macrophages were dominant in IS and BAL with similar frequencies, but differing expression of CD16 (lower in IS), CD115, and surface-associated NE (higher in IS). Neutrophil frequency and phenotype did not differ between IS and BAL. Finally, neutrophil frequency in IS correlated positively with air trapping. CONCLUSIONS: IS collected from 2-year-olds with CF yields biomarkers of early airway inflammation with good agreement with BAL, notably with regard to molecular and cellular outcomes related to neutrophils and monocytes/macrophages.


Assuntos
Fibrose Cística , Escarro , Biomarcadores , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Humanos , Neutrófilos , Projetos Piloto
7.
Biomaterials ; 283: 121421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219147

RESUMO

Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability in cell quality. Here, we demonstrate how computational methods can be used to identify mechanisms of cardiac-derived c-Kit+ cell (CPC) reparative capacity and how biomaterials can be designed to improve cardiac patch performance by engaging these mechanisms. Computational modeling revealed the integrin subunit αV (ITGAV) as an important mediator of repair in CPCs with inherently low reparative capacity (CPCslow). We could engage ITGAV on the cell surface and improve reparative capacity by culturing CPCs on electrospun polycaprolactone (PCL) patches coated with fibronectin (PCL + FN). We tested CPCs from 4 different donors and found that only CPCslow with high ITGAV expression (patient 956) had improved anti-fibrotic and pro-angiogenic paracrine secretion on PCL + FN patches. Further, knockdown of ITGAV via siRNA led to loss of this improved paracrine secretion in patient 956 on PCL + FN patches. When implanted in rat model of RVHF, only PCL + FN + 956 patches were able to improve RV function, while PCL +956 patches did not. In total, we demonstrate how cardiac patches can be designed in a patient-specific manner to improve in vitro and in vivo outcomes.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , Animais , Terapia Baseada em Transplante de Células e Tecidos , Criança , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/terapia , Ventrículos do Coração , Humanos , Células-Tronco Multipotentes , Ratos
8.
J Leukoc Biol ; 112(4): 707-716, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35172381

RESUMO

Cystic fibrosis (CF) airways feature high extracellular levels of the IL-1 family of proinflammatory mediators. These mediators are cleavage products of caspase-1, the final protease in the inflammasome cascade. Due to the proven chronic presence of reprogrammed neutrophils in the CF airway lumen, understanding inflammasome signaling in these cells is of great importance to understand how disease is perpetuated in this milieu. Here, we hypothesized that CF airway neutrophils contribute to chronic inflammation, in part, via the packaging of inflammasome-inducing signals in extracellular vesicles (EVs). We confirmed that CF airway fluid is enriched in IL-1α, IL-1ß, and IL-18, and that CF airway neutrophils up-regulate the activating receptor IL-1R1. Meanwhile, down-modulatory signals such as IL-1R2 and IL-1RA are unchanged. Active caspase-1 itself is present in CF airway fluid EVs, with neutrophil-derived EVs being most enriched. Using a transmigration model of CF airway inflammation, we show that CF airway fluid EVs are necessary and sufficient to induce primary granule exocytosis by naïve neutrophils (hallmark of reprogramming) and concomitantly activate caspase-1 and IL-1ß production by these cells and that the addition of triple-combination highly effective CFTR modulator therapy does not abrogate these effects. Finally, EVs from activated neutrophils can deliver active caspase-1 to primary tracheal epithelial cells and induce their release of IL-1α. These findings support the existence of a feed-forward inflammatory process by which reprogrammed CF airway neutrophils bypass 2-step control of inflammasome activation in neighboring cells (naïve neutrophils and epithelial cells) via the transfer of bioactive EVs.


Assuntos
Fibrose Cística , Vesículas Extracelulares , Caspases , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Inflamassomos , Inflamação , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-18 , Neutrófilos , Peptídeo Hidrolases , Receptores Tipo II de Interleucina-1
9.
Biomater Sci ; 10(2): 444-456, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34878443

RESUMO

Pediatric patients with congenital heart defects (CHD) often present with heart failure from increased load on the right ventricle (RV) due to both surgical methods to treat CHD and the disease itself. Patients with RV failure often require transplantation, which is limited due to lack of donor availability and rejection. Previous studies investigating the development and in vitro assessment of a bioprinted cardiac patch composed of cardiac extracellular matrix (cECM) and human c-kit + progenitor cells (hCPCs) showed that the construct has promise in treating cardiac dysfunction. The current study investigates in vivo cardiac outcomes of patch implantation in a rat model of RV failure. Patch parameters including cECM-inclusion and hCPC-inclusion are investigated. Assessments include hCPC retention, RV function, and tissue remodeling (vascularization, hypertrophy, and fibrosis). Animal model evaluation shows that both cell-free and neonatal hCPC-laden cECM-gelatin methacrylate (GelMA) patches improve RV function and tissue remodeling compared to other patch groups and controls. Inclusion of cECM is the most influential parameter driving therapeutic improvements, with or without cell inclusion. This study paves the way for clinical translation in treating pediatric heart failure using bioprinted GelMA-cECM and hCPC-GelMA-cECM patches.


Assuntos
Insuficiência Cardíaca , Células-Tronco , Animais , Criança , Matriz Extracelular , Gelatina , Coração , Humanos , Ratos
10.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802410

RESUMO

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Assuntos
Adaptação Fisiológica/genética , Microambiente Celular/genética , Fibrose Cística/genética , Pulmão/patologia , Monócitos/patologia , Transcrição Gênica/genética , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Neutrófilos/patologia , Transdução de Sinais/fisiologia
11.
Exp Dermatol ; 29(12): 1191-1198, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047366

RESUMO

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by recruitment of leucocytes into skin and release of damaging enzymes, resulting in epidermal detachment and blister formation. To better understand the role of leukotriene B4 (LTB4) and other inflammatory factors in BP pathophysiology, we conducted microscopic and immunohistochemical analyses of preserved skin biopsy sections and conducted flow cytometry and ELISA analyses of matched blood and blister fluid from BP patients. Neutrophils predominated in BP blister fluid, which also contained monocytes/macrophages and T cells, but few to no eosinophils and B cells. In contrast, BP skin histology showed a different pattern, with abundant neutrophils but eosinophils being the predominant immune cell type. LTB4 pathway and neutrophil activation markers were prevalent in BP skin lesions and strongly associated with perivascular neutrophils. Blister fluid neutrophils, monocytes/macrophages and eosinophils all exhibited increased surface expression of leukotriene A4 hydrolase and neutrophil elastase (P = .002 for both). Blister fluid was also enriched in interleukins (IL)-1α, IL-1ß, IL-8, IL-10, IL-18, monocyte colony-stimulating factor (M-CSF) and vascular endothelial growth factor (VEGF). Our findings suggest differential leucocyte recruitment from blood into dermis and from dermis into blister, which correlates with disease activity, and presents potential new treatment opportunities for BP.


Assuntos
Exsudatos e Transudatos/citologia , Leucotrieno B4/metabolismo , Penfigoide Bolhoso/sangue , Penfigoide Bolhoso/patologia , Pele/patologia , Idoso , Idoso de 80 Anos ou mais , Eosinófilos , Epóxido Hidrolases/metabolismo , Exsudatos e Transudatos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Interleucinas/metabolismo , Elastase de Leucócito/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/enzimologia , Masculino , Pessoa de Meia-Idade , Monócitos/enzimologia , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Penfigoide Bolhoso/imunologia , Fatores Raciais , Fatores Sexuais , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Circ Res ; 127(3): 379-390, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299299

RESUMO

RATIONALE: Mitochondrial Ca2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca2+ uniporter) mediates mitochondrial Ca2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. OBJECTIVE: Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. METHODS AND RESULTS: Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted (Mcub-/-) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub-/- mice were more sensitive to Ca2+ overload. CONCLUSIONS: Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.


Assuntos
Cálcio/metabolismo , Membro Posterior/irrigação sanguínea , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Animais , Sinalização do Cálcio , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Precondicionamento Isquêmico , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia
13.
Ultrasound Med Biol ; 46(6): 1474-1489, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143861

RESUMO

Nanoscale phase-change contrast agents (PCCAs) have been found to have great potential in non-invasive extravascular imaging and therapeutic delivery. However, the contrast-to-tissue ratio (CTR) of PCCA images is usually limited because of either physiological motion or incomplete cancelation of tissue signal. Therefore, to improve the CTR of PCCA images in the presence of physiological motion, a new imaging technique, ultrafast inter-frame activation ultrasound (UIAU) imaging, is proposed and validated. Results of studies with controlled motion in tissue-mimicking phantoms indicate UIAU could provide significantly higher CTRs (maximum: 17.3 ± 0.9 dB) relative to conventional pulse inversion imaging (maximum CTR: 3.4 ± 1.4 dB). UIAU has CTRs up to 16.1 ± 1.0 dB relative to 3.9 ± 2.3 dB for differential imaging in the presence of physiological motion at 20 mm/s. In vivo imaging of PCCAs in the rat liver also reveals the ability of UIAU to enhance PCCA image contrast in the presence of physiological motion.


Assuntos
Meios de Contraste/administração & dosagem , Imagem Molecular/métodos , Temperatura de Transição , Ultrassonografia/métodos , Animais , Fluorocarbonos , Fígado/diagnóstico por imagem , Masculino , Movimento (Física) , Nanopartículas , Imagens de Fantasmas , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Respiração , Suínos
14.
Stem Cells ; 37(12): 1528-1541, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574184

RESUMO

Nearly 1 in every 120 children born has a congenital heart defect. Although surgical therapy has improved survival, many of these children go on to develop right ventricular heart failure (RVHF). The emergence of cardiovascular regenerative medicine as a potential therapeutic strategy for pediatric HF has provided new avenues for treatment with a focus on repairing or regenerating the diseased myocardium to restore cardiac function. Although primarily tried using adult cells and adult disease models, stem cell therapy is relatively untested in the pediatric population. Here, we investigate the ability of electrical stimulation (ES) to enhance the retention and therapeutic function of pediatric cardiac-derived c-kit+ progenitor cells (CPCs) in an animal model of RVHF. Human CPCs isolated from pediatric patients were exposed to chronic ES and implanted into the RV myocardium of rats. Cardiac function and cellular retention analysis showed electrically stimulated CPCs (ES-CPCs) were retained in the heart at a significantly higher level and longer time than control CPCs and also significantly improved right ventricular functional parameters. ES also induced upregulation of extracellular matrix and adhesion genes and increased in vitro survival and adhesion of cells. Specifically, upregulation of ß1 and ß5 integrins contributed to the increased retention of ES-CPCs. Lastly, we show that ES induces CPCs to release higher levels of pro-reparative factors in vitro. These findings suggest that ES can be used to increase the retention, survival, and therapeutic effect of human c-kit+ progenitor cells and can have implications on a variety of cell-based therapies. Stem Cells 2019;37:1528-1541.


Assuntos
Estimulação Elétrica/métodos , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Função Ventricular Direita/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Pré-Escolar , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Recém-Nascido , Integrina beta1/biossíntese , Masculino , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Medicina Regenerativa/métodos , Células-Tronco/citologia
15.
Horm Res Paediatr ; 91(3): 164-174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970347

RESUMO

BACKGROUND/AIMS: The term idiopathic short stature (ISS) describes short stature of unknown, but likely polygenic, etiology. This study aimed to identify genetic polymorphisms associated with the ISS phenotype, and with growth response to supplemental GH. METHODS: Using a case-control analysis we compared the prevalence of "tall" versus "short" alleles at 52 polymorphic loci (17 in growth-related candidate genes, 35 identified in prior genome-wide association studies of adult height) in 94 children with ISS followed in the Genetics and Neuroendocrinology of Short Stature International Study, versus 143 controls from the Fels Longitudinal Study. RESULTS: Four variants were nominally associated with ISS using a genotypic model, confirmed by a simultaneous confident inference approach: compared with controls children with ISS had lower odds of "tall" alleles (odds ratio, 95% CI) for GHR (0.52, 0.29-0.96); rs2234693/ESR1 (0.50, 0.25-0.98); rs967417/BMP2 (0.39, 0.17-0.93), and rs4743034/ZNF462 (0.40, 0.18-0.89). Children with ISS also had lower odds of the "tall" allele (A) at the IGFBP3 -202 promoter polymorphism (rs2855744; 0.40, 0.20-0.80) in the simultaneous confident inference analysis. A significant association with 1st-year height SD score increase during GH treatment was observed with rs11205277, located near 4 known genes: MTMR11, SV2A, HIST2H2AA3, and SF3B4; the latter, in which heterozygous mutations occur in Nager acrofacial dysostosis, appears the most relevant gene. CONCLUSIONS: In children with ISS we identified associations with "short" alleles at a number of height-related loci. In addition, a polymorphic variant located near SF3B4 was associated with the GH treatment response in our cohort. The findings in our small study warrant further investigation.


Assuntos
Loci Gênicos , Transtornos do Crescimento , Hormônio do Crescimento Humano/administração & dosagem , Polimorfismo Genético , Adolescente , Criança , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Estudos Longitudinais , Masculino
16.
Regen Eng Transl Med ; 5(1): 30-41, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31008183

RESUMO

Control of microvascular network growth is critical to treatment of ischemic tissue diseases and enhancing regenerative capacity of tissue engineering implants. Conventional therapeutic strategies for inducing angiogenesis aim to deliver one or more proangiogenic cytokines or to over-express known pro-angiogenic genes, but seldom address potential compensatory or cooperative effects between signals and the overarching signaling pathways that determine successful outcomes. An emerging grand challenge is harnessing the expanding knowledge base of angiogenic signaling pathways toward development of successful new therapies. We previously performed drug optimization studies by various substitutions of a 2-(2,6-dioxo-3-piperidyl)isoindole-1,3-dione scaffold to discover novel bioactive small molecules capable of inducing growth of microvascular networks, the most potent of which we termed phthalimide neovascularization factor 1 (PNF1, formerly known as SC-3-149). We then showed that PNF-1 regulates the transcription of signaling molecules that are associated with vascular initiation and maturation in a time-dependent manner through a novel pathway compendium analysis in which transcriptional regulatory networks of PNF-1-stimulated microvascular endothelial cells are overlaid with literature-derived angiogenic pathways. In this study, we generated three analogues (SC-3-143, SC-3-263, SC-3-13) through systematic transformations to PNF1 to evaluate the effects of electronic, steric, chiral, and hydrogen bonding changes on angiogenic signaling. We then expanded our compendium analysis toward these new compounds. Variables obtained from the compendium analysis were then used to construct a PLSR model to predict endothelial cell proliferation. Our combined approach suggests mechanisms of action involving suppression of VEGF pathways through TGF-ß andNR3C1 network activation.

17.
Sci Rep ; 9(1): 2874, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814584

RESUMO

Neutrophils are recruited to the airways of patients with acute respiratory distress syndrome (ARDS) where they acquire an activated pro-survival phenotype with an enhanced respiratory burst thought to contribute to ARDS pathophysiology. Our in vitro model enables blood neutrophil transepithelial migration into cell-free tracheal aspirate fluid from patients to recapitulate the primary airway neutrophil phenotype observed in vivo. Neutrophils transmigrated through our model toward airway fluid from children with lower respiratory viral infections coinfected with bacteria had elevated levels of neutrophil activation markers but paradoxically exhibited an inability to kill bacteria and a defective respiratory burst compared with children without bacterial coinfection. The airway fluid from children with bacterial coinfections had higher levels of neutrophil elastase activity, as well as myeloperoxidase levels compared to children without bacterial coinfection. Neutrophils transmigrated into the aspirate fluid from children with bacterial coinfection showed decreased respiratory burst and killing activity against H. influenzae and S. aureus compared to those transmigrated into the aspirate fluid from children without bacterial coinfection. Use of a novel transmigration model recapitulates this pathological phenotype in vitro that would otherwise be impossible in a patient, opening avenues for future mechanistic and therapeutic research.


Assuntos
Infecções Bacterianas , Coinfecção , Neutrófilos , Explosão Respiratória/imunologia , Síndrome do Desconforto Respiratório , Viroses , Adolescente , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/virologia , Criança , Pré-Escolar , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/patologia , Coinfecção/virologia , Feminino , Haemophilus influenzae/imunologia , Humanos , Lactente , Recém-Nascido , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/microbiologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Staphylococcus aureus/imunologia , Viroses/imunologia , Viroses/microbiologia , Viroses/patologia , Viroses/virologia
18.
J Allergy Clin Immunol Pract ; 7(2): 516-525.e6, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30193935

RESUMO

BACKGROUND: Airway neutrophils are abundant in some children with severe asthma, but their functions are poorly understood. OBJECTIVE: To characterize that the inflammatory airway environment of children with neutrophil-predominant severe asthma promotes neutrophil survival and disrupts neutrophil-associated innate immune defenses. METHODS: Sixty-seven children with severe asthma refractory to high-dose inhaled corticosteroid treatment undergoing bronchoscopy with bronchoalveolar lavage (BAL) for clinical indications were stratified into neutrophil "high" versus "low" groups on the basis of BAL differential counts. Neutrophil activation markers, functional assays, and phenotyping studies were performed, as well as airway macrophage functional assays. Results were compared with those from children with moderate asthma treated with inhaled corticosteroids. RESULTS: Children with neutrophil-predominant severe asthma had increased markers of neutrophil activation/degranulation and a greater magnitude of airway proinflammatory cytokine and chemokine release. Primary neutrophils exposed to BAL of these children exhibited greater phagocytic capability and greater neutrophil extracellular trap formation, but a more impaired respiratory burst. Despite greater abundance of airway TGF-ß1, the neutrophils were not more apoptotic. Instead, neutrophils had a highly proinflammatory phenotype associated with a number of surface markers that regulate neutrophil activation, recruitment/migration, and granule release. Airway macrophages from children with neutrophil-predominant severe asthma were also more proinflammatory with impaired phagocytosis and increased apoptosis. CONCLUSIONS: Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival. Airway macrophages are also proinflammatory and dysfunctional and may contribute to global innate immune impairment. Therapies that target neutrophils and related inflammation may be warranted in this subset of children.


Assuntos
Asma/imunologia , Neutrófilos/imunologia , Adolescente , Corticosteroides/uso terapêutico , Adulto , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Criança , Citocinas/imunologia , Resistência a Medicamentos , Feminino , Células HL-60 , Humanos , Macrófagos/imunologia , Masculino , Fagocitose , Fenótipo , Adulto Jovem
19.
Am J Respir Crit Care Med ; 199(7): 873-881, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281324

RESUMO

RATIONALE: Neutrophils are recruited to the airways of individuals with cystic fibrosis (CF). In adolescents and adults with CF, airway neutrophils actively exocytose the primary granule protease elastase (NE), whose extracellular activity correlates with lung damage. During childhood, free extracellular NE activity is measurable only in a subset of patients, and the exocytic function of airway neutrophils is unknown. OBJECTIVES: To measure NE exocytosis by airway neutrophils in relation to free extracellular NE activity and lung damage in children with CF. METHODS: We measured lung damage using chest computed tomography coupled with the Perth-Rotterdam Annotated Grid Morphometric Analysis for Cystic Fibrosis scoring system. Concomitantly, we phenotyped blood and BAL fluid leukocytes by flow and image cytometry, and measured free extracellular NE activity using spectrophotometric and Förster resonance energy transfer assays. Children with airway inflammation linked to aerodigestive disorder were enrolled as control subjects. MEASUREMENTS AND MAIN RESULTS: Children with CF but not disease control children harbored BAL fluid neutrophils with high exocytosis of primary granules, before the detection of bronchiectasis. This measure of NE exocytosis correlated with lung damage (R = 0.55; P = 0.0008), whereas the molecular measure of free extracellular NE activity did not. This discrepancy may be caused by the inhibition of extracellular NE by BAL fluid antiproteases and its binding to leukocytes. CONCLUSIONS: NE exocytosis by airway neutrophils occurs in all children with CF, and its cellular measure correlates with early lung damage. These findings implicate live airway neutrophils in early CF pathogenesis, which should instruct biomarker development and antiinflammatory therapy in children with CF.


Assuntos
Fibrose Cística/fisiopatologia , Exocitose/fisiologia , Lesão Pulmonar/fisiopatologia , Neutrófilos/metabolismo , Elastase Pancreática/metabolismo , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
20.
J Cyst Fibros ; 18(1): 64-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29937317

RESUMO

BACKGROUND: Resistin is an immunometabolic mediator that is elevated in several inflammatory disorders. A ligand for Toll-like receptor 4, resistin modulates the recruitment and activation of myeloid cells, notably neutrophils. Neutrophils are major drivers of cystic fibrosis (CF) lung disease, in part due to the release of human neutrophil elastase- and myeloperoxidase-rich primary granules, leading to tissue damage. Here we assessed the relationship of resistin to CF lung disease. METHODS: Resistin levels were measured in plasma and sputum from three retrospective CF cohorts spanning a wide range of disease. We also assessed the ability of neutrophils to secrete resistin upon activation in vitro. Finally, we constructed a multivariate model assessing the relationship between resistin levels and lung function. RESULTS: Plasma resistin levels were only marginally higher in CF than in healthy control subjects. By contrast, sputum resistin levels were very high in CF, reaching 50-100 fold higher levels than in plasma. Among CF patients, higher plasma resistin levels were associated with allergic bronchopulmonary aspergillosis, and higher sputum resistin levels were associated with CF-related diabetes. Mechanistically, in vitro release of neutrophil primary granules was concomitant with resistin secretion. Overall, sputum resistin levels were negatively correlated with CF lung function, independently of other variables (age, sex, and genotype). CONCLUSIONS: Our data establish relationships between resistin levels in the plasma and sputum of CF patients that correlate with disease status, and identify resistin as a novel mechanistic link between neutrophilic inflammation and lung disease in CF.


Assuntos
Fibrose Cística/metabolismo , Fluxo Expiratório Forçado/fisiologia , Resistina/metabolismo , Escarro/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Fibrose Cística/diagnóstico , Fibrose Cística/fisiopatologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Testes de Função Respiratória , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA