Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 3(1): 59, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095223

RESUMO

BACKGROUND: Presence of lymph node metastasis (LNM) influences prognosis and clinical decision-making in colorectal cancer. However, detection of LNM is variable and depends on a number of external factors. Deep learning has shown success in computational pathology, but has struggled to boost performance when combined with known predictors. METHODS: Machine-learned features are created by clustering deep learning embeddings of small patches of tumor in colorectal cancer via k-means, and then selecting the top clusters that add predictive value to a logistic regression model when combined with known baseline clinicopathological variables. We then analyze performance of logistic regression models trained with and without these machine-learned features in combination with the baseline variables. RESULTS: The machine-learned extracted features provide independent signal for the presence of LNM (AUROC: 0.638, 95% CI: [0.590, 0.683]). Furthermore, the machine-learned features add predictive value to the set of 6 clinicopathologic variables in an external validation set (likelihood ratio test, p < 0.00032; AUROC: 0.740, 95% CI: [0.701, 0.780]). A model incorporating these features can also further risk-stratify patients with and without identified metastasis (p < 0.001 for both stage II and stage III). CONCLUSION: This work demonstrates an effective approach to combine deep learning with established clinicopathologic factors in order to identify independently informative features associated with LNM. Further work building on these specific results may have important impact in prognostication and therapeutic decision making for LNM. Additionally, this general computational approach may prove useful in other contexts.


When colorectal cancers spread to the lymph nodes, it can indicate a poorer prognosis. However, detecting lymph node metastasis (spread) can be difficult and depends on a number of factors such as how samples are taken and processed. Here, we show that machine learning, which involves computer software learning from patterns in data, can predict lymph node metastasis in patients with colorectal cancer from the microscopic appearance of their primary tumor and the clinical characteristics of the patients. We also show that the same approach can predict patient survival. With further work, our approach may help clinicians to inform patients about their prognosis and decide on appropriate treatments.

2.
NPJ Breast Cancer ; 8(1): 113, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192400

RESUMO

Histologic grading of breast cancer involves review and scoring of three well-established morphologic features: mitotic count, nuclear pleomorphism, and tubule formation. Taken together, these features form the basis of the Nottingham Grading System which is used to inform breast cancer characterization and prognosis. In this study, we develop deep learning models to perform histologic scoring of all three components using digitized hematoxylin and eosin-stained slides containing invasive breast carcinoma. We first evaluate model performance using pathologist-based reference standards for each component. To complement this typical approach to evaluation, we further evaluate the deep learning models via prognostic analyses. The individual component models perform at or above published benchmarks for algorithm-based grading approaches, achieving high concordance rates with pathologist grading. Further, prognostic performance using deep learning-based grading is on par with that of pathologists performing review of matched slides. By providing scores for each component feature, the deep-learning based approach also provides the potential to identify the grading components contributing most to prognostic value. This may enable optimized prognostic models, opportunities to improve access to consistent grading, and approaches to better understand the links between histologic features and clinical outcomes in breast cancer.

3.
Sci Rep ; 11(1): 16605, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400666

RESUMO

Both histologic subtypes and tumor mutation burden (TMB) represent important biomarkers in lung cancer, with implications for patient prognosis and treatment decisions. Typically, TMB is evaluated by comprehensive genomic profiling but this requires use of finite tissue specimens and costly, time-consuming laboratory processes. Histologic subtype classification represents an established component of lung adenocarcinoma histopathology, but can be challenging and is associated with substantial inter-pathologist variability. Here we developed a deep learning system to both classify histologic patterns in lung adenocarcinoma and predict TMB status using de-identified Hematoxylin and Eosin (H&E) stained whole slide images. We first trained a convolutional neural network to map histologic features across whole slide images of lung cancer resection specimens. On evaluation using an external data source, this model achieved patch-level area under the receiver operating characteristic curve (AUC) of 0.78-0.98 across nine histologic features. We then integrated the output of this model with clinico-demographic data to develop an interpretable model for TMB classification. The resulting end-to-end system was evaluated on 172 held out cases from TCGA, achieving an AUC of 0.71 (95% CI 0.63-0.80). The benefit of using histologic features in predicting TMB is highlighted by the significant improvement this approach offers over using the clinical features alone (AUC of 0.63 [95% CI 0.53-0.72], p = 0.002). Furthermore, we found that our histologic subtype-based approach achieved performance similar to that of a weakly supervised approach (AUC of 0.72 [95% CI 0.64-0.80]). Together these results underscore that incorporating histologic patterns in biomarker prediction for lung cancer provides informative signals, and that interpretable approaches utilizing these patterns perform comparably with less interpretable, weakly supervised approaches.


Assuntos
Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Aprendizado Profundo , Neoplasias Pulmonares/genética , Mutação , Adenocarcinoma de Pulmão/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Carcinoma Pulmonar de Células não Pequenas/patologia , Corantes , Conjuntos de Dados como Assunto , Amarelo de Eosina-(YS) , Feminino , Hematoxilina , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Fatores Sexuais , Fumar , Coloração e Rotulagem
4.
NPJ Digit Med ; 4(1): 71, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875798

RESUMO

Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases (7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95% CI: 0.66-0.73) and 0.69 (95% CI: 0.64-0.72), and added significant predictive value to a set of nine clinicopathologic features. To interpret the DLS, we explored the ability of different human-interpretable features to explain the variance in DLS scores. We observed that clinicopathologic features such as T-category, N-category, and grade explained a small fraction of the variance in DLS scores (R2 = 18% in both validation sets). Next, we generated human-interpretable histologic features by clustering embeddings from a deep-learning-based image-similarity model and showed that they explained the majority of the variance (R2 of 73-80%). Furthermore, the clustering-derived feature most strongly associated with high DLS scores was also highly prognostic in isolation. With a distinct visual appearance (poorly differentiated tumor cell clusters adjacent to adipose tissue), this feature was identified by annotators with 87.0-95.5% accuracy. Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies.

5.
Commun Med (Lond) ; 1: 10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602201

RESUMO

Background: Gleason grading of prostate cancer is an important prognostic factor, but suffers from poor reproducibility, particularly among non-subspecialist pathologists. Although artificial intelligence (A.I.) tools have demonstrated Gleason grading on-par with expert pathologists, it remains an open question whether and to what extent A.I. grading translates to better prognostication. Methods: In this study, we developed a system to predict prostate cancer-specific mortality via A.I.-based Gleason grading and subsequently evaluated its ability to risk-stratify patients on an independent retrospective cohort of 2807 prostatectomy cases from a single European center with 5-25 years of follow-up (median: 13, interquartile range 9-17). Results: Here, we show that the A.I.'s risk scores produced a C-index of 0.84 (95% CI 0.80-0.87) for prostate cancer-specific mortality. Upon discretizing these risk scores into risk groups analogous to pathologist Grade Groups (GG), the A.I. has a C-index of 0.82 (95% CI 0.78-0.85). On the subset of cases with a GG provided in the original pathology report (n = 1517), the A.I.'s C-indices are 0.87 and 0.85 for continuous and discrete grading, respectively, compared to 0.79 (95% CI 0.71-0.86) for GG obtained from the reports. These represent improvements of 0.08 (95% CI 0.01-0.15) and 0.07 (95% CI 0.00-0.14), respectively. Conclusions: Our results suggest that A.I.-based Gleason grading can lead to effective risk stratification, and warrants further evaluation for improving disease management.

6.
Commun Med (Lond) ; 1: 14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602213

RESUMO

Background: Breast cancer management depends on biomarkers including estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (ER/PR/HER2). Though existing scoring systems are widely used and well-validated, they can involve costly preparation and variable interpretation. Additionally, discordances between histology and expected biomarker findings can prompt repeat testing to address biological, interpretative, or technical reasons for unexpected results. Methods: We developed three independent deep learning systems (DLS) to directly predict ER/PR/HER2 status for both focal tissue regions (patches) and slides using hematoxylin-and-eosin-stained (H&E) images as input. Models were trained and evaluated using pathologist annotated slides from three data sources. Areas under the receiver operator characteristic curve (AUCs) were calculated for test sets at both a patch-level (>135 million patches, 181 slides) and slide-level (n = 3274 slides, 1249 cases, 37 sites). Interpretability analyses were performed using Testing with Concept Activation Vectors (TCAV), saliency analysis, and pathologist review of clustered patches. Results: The patch-level AUCs are 0.939 (95%CI 0.936-0.941), 0.938 (0.936-0.940), and 0.808 (0.802-0.813) for ER/PR/HER2, respectively. At the slide level, AUCs are 0.86 (95%CI 0.84-0.87), 0.75 (0.73-0.77), and 0.60 (0.56-0.64) for ER/PR/HER2, respectively. Interpretability analyses show known biomarker-histomorphology associations including associations of low-grade and lobular histology with ER/PR positivity, and increased inflammatory infiltrates with triple-negative staining. Conclusions: This study presents rapid breast cancer biomarker estimation from routine H&E slides and builds on prior advances by prioritizing interpretability of computationally learned features in the context of existing pathological knowledge.

7.
JAMA Netw Open ; 3(11): e2023267, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180129

RESUMO

Importance: Expert-level artificial intelligence (AI) algorithms for prostate biopsy grading have recently been developed. However, the potential impact of integrating such algorithms into pathologist workflows remains largely unexplored. Objective: To evaluate an expert-level AI-based assistive tool when used by pathologists for the grading of prostate biopsies. Design, Setting, and Participants: This diagnostic study used a fully crossed multiple-reader, multiple-case design to evaluate an AI-based assistive tool for prostate biopsy grading. Retrospective grading of prostate core needle biopsies from 2 independent medical laboratories in the US was performed between October 2019 and January 2020. A total of 20 general pathologists reviewed 240 prostate core needle biopsies from 240 patients. Each pathologist was randomized to 1 of 2 study cohorts. The 2 cohorts reviewed every case in the opposite modality (with AI assistance vs without AI assistance) to each other, with the modality switching after every 10 cases. After a minimum 4-week washout period for each batch, the pathologists reviewed the cases for a second time using the opposite modality. The pathologist-provided grade group for each biopsy was compared with the majority opinion of urologic pathology subspecialists. Exposure: An AI-based assistive tool for Gleason grading of prostate biopsies. Main Outcomes and Measures: Agreement between pathologists and subspecialists with and without the use of an AI-based assistive tool for the grading of all prostate biopsies and Gleason grade group 1 biopsies. Results: Biopsies from 240 patients (median age, 67 years; range, 39-91 years) with a median prostate-specific antigen level of 6.5 ng/mL (range, 0.6-97.0 ng/mL) were included in the analyses. Artificial intelligence-assisted review by pathologists was associated with a 5.6% increase (95% CI, 3.2%-7.9%; P < .001) in agreement with subspecialists (from 69.7% for unassisted reviews to 75.3% for assisted reviews) across all biopsies and a 6.2% increase (95% CI, 2.7%-9.8%; P = .001) in agreement with subspecialists (from 72.3% for unassisted reviews to 78.5% for assisted reviews) for grade group 1 biopsies. A secondary analysis indicated that AI assistance was also associated with improvements in tumor detection, mean review time, mean self-reported confidence, and interpathologist agreement. Conclusions and Relevance: In this study, the use of an AI-based assistive tool for the review of prostate biopsies was associated with improvements in the quality, efficiency, and consistency of cancer detection and grading.


Assuntos
Inteligência Artificial/normas , Patologia Clínica/normas , Neoplasias da Próstata/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia com Agulha de Grande Calibre/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Estudos Retrospectivos
8.
J Pathol Inform ; 10: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921487

RESUMO

BACKGROUND: Digital pathology enables remote access or consults and powerful image analysis algorithms. However, the slide digitization process can create artifacts such as out-of-focus (OOF). OOF is often only detected on careful review, potentially causing rescanning, and workflow delays. Although scan time operator screening for whole-slide OOF is feasible, manual screening for OOF affecting only parts of a slide is impractical. METHODS: We developed a convolutional neural network (ConvFocus) to exhaustively localize and quantify the severity of OOF regions on digitized slides. ConvFocus was developed using our refined semi-synthetic OOF data generation process and evaluated using seven slides spanning three different tissue and three different stain types, each of which were digitized using two different whole-slide scanner models ConvFocus's predictions were compared with pathologist-annotated focus quality grades across 514 distinct regions representing 37,700 35 µm × 35 µm image patches, and 21 digitized "z-stack" WSIs that contain known OOF patterns. RESULTS: When compared to pathologist-graded focus quality, ConvFocus achieved Spearman rank coefficients of 0.81 and 0.94 on two scanners and reproduced the expected OOF patterns from z-stack scanning. We also evaluated the impact of OOF on the accuracy of a state-of-the-art metastatic breast cancer detector and saw a consistent decrease in performance with increasing OOF. CONCLUSIONS: Comprehensive whole-slide OOF categorization could enable rescans before pathologist review, potentially reducing the impact of digitization focus issues on the clinical workflow. We show that the algorithm trained on our semi-synthetic OOF data generalizes well to real OOF regions across tissue types, stains, and scanners. Finally, quantitative OOF maps can flag regions that might otherwise be misclassified by image analysis algorithms, preventing OOF-induced errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA