Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Pract ; 36(3): 679-684, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34670427

RESUMO

Background: Contraction alkalosis is characterized by low serum sodium and chloride and high serum carbon dioxide and bicarbonate levels. Case Report: A 28-year-old Caucasian active-duty male with a history of autosomal dominant polycystic kidney disease and diarrhea-predominant Irritable Bowel Syndrome (D-IBS) presented to his primary care provider (PCP) with elevated blood pressure (136/96 mmHg), was diagnosed with stage-2 hypertension, and started oral HCTZ (25 mg/day). His medications included dicyclomine (10 mg oral three times daily). Subsequently, (Visit 1), his blood pressure was 130/91 mmHg and he was started on telmisartan (20 mg/day). At Visit 2, 4 weeks later, his blood pressure improved (121/73 mmHg); however, blood chemistry revealed elevated serum CO2 (32 mEq/L) and chloride (94 mmol/L). Four days later, the patient presented to the Emergency Department with dyspnea and swallowing difficulty. The patient returned to his PCP 3 days later complaining of cough, congestion, vomiting, and mild dyspnea, blood pressure of 124/84 mmHg. Two months later, sudden onset of projectile vomiting and abdominal pain while running was reported, resolved by rehydration and a single oral dose of prochlorperazine 25 mg. Three months later, (Visit 3), he complained of lightheadedness and cloudy judgment, suggesting contraction alkalosis. HCTZ was discontinued and telmisartan was increased to 20 mg twice daily. A follow-up blood chemistry panel 2 weeks later revealed serum chloride and CO2 levels within normal limits and blood pressure under 130/80 mmHg. Conclusion: This is the first known report of contraction alkalosis driven by drug-drug interaction between dicyclomine and HCTZ.


Assuntos
Alcalose , Hipertensão , Humanos , Masculino , Adulto , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Hidroclorotiazida/farmacologia , Hidroclorotiazida/uso terapêutico , Diciclomina/farmacologia , Diciclomina/uso terapêutico , Cloretos/farmacologia , Cloretos/uso terapêutico , Dióxido de Carbono/farmacologia , Dióxido de Carbono/uso terapêutico , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Alcalose/tratamento farmacológico , Anti-Hipertensivos , Quimioterapia Combinada
2.
Cancers (Basel) ; 13(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34503235

RESUMO

To our knowledge, our group is the first to demonstrate that NRDP1 is located in the nucleus as well as the cytoplasm of CaP cells. Subcellular fractionation, immunohistochemistry, and immunofluorescence analysis combined with confocal microscopy were used to validate this finding. Subcellular fractionation followed by western blot analysis revealed a strong association between AR and NRDP1 localization when AR expression and/or cellular localization was manipulated via treatment with R1881, AR-specific siRNA, or enzalutamide. Transfection of LNCaP with various NRDP1 and AR constructs followed by immunoprecipitation confirmed binding of NRDP1 to AR is possible and determined that binding requires the hinge region of AR. Co-transfection with NRDP1 constructs and HA-ubiquitin followed by subcellular fractionation confirmed that nuclear NRDP1 retains its ubiquitin ligase activity. We also show that increased nuclear NRDP1 is associated with PSA recurrence in CaP patients (n = 162, odds ratio; 1.238, p = 0.007) and that higher levels of nuclear NRDP1 are found in castration resistant cell lines (CWR22Rv1 and PC3) compared to androgen sensitive cell lines (LNCaP and MDA-PCa-3B). The combined data indicate that NRDP1 plays a role in mediating CaP progression and supports further investigation of both the mechanism by which nuclear transport occurs and the identification of specific nuclear targets.

3.
NMR Biomed ; 32(10): e4070, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107583

RESUMO

Lipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition. Molecular imaging techniques have been developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment response. For decades, MRS has been the dominant non-invasive technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that can be exploited using optical imaging, mass spectrometry imaging, and positron emission tomography. These novel imaging modalities have provided researchers with a diverse toolbox to examine changes in lipids in response to a wide array of anticancer strategies including chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy, or a combination of these strategies. The understanding of lipid metabolism in response to cancer therapy continues to evolve as each therapeutic method emerges, and this review seeks to summarize the current field and areas of unmet needs.


Assuntos
Metabolismo dos Lipídeos , Imagem Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Apoptose , Colina Quinase/antagonistas & inibidores , Colina Quinase/metabolismo , Progressão da Doença , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
4.
Antioxid Redox Signal ; 20(6): 872-86, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23758611

RESUMO

AIMS: We reported earlier that ischemia results in the generation of reactive oxygen species (ROS) via the closure of a K(ATP) channel which causes membrane depolarization and NADPH oxidase 2 (NOX2) activation. This study was undertaken to understand the role of ischemia-mediated ROS in signaling. RESULTS: Angiogenic potential of pulmonary microvascular endothelial cells (PMVEC) was studied in vitro and in the hind limb in vivo. Flow adapted PMVEC injected into a Matrigel matrix showed significantly higher tube formation than cells grown under static conditions or cells from mice with knockout of K(ATP) channels or the NOX2. Blocking of hypoxia inducible factor-1 alpha (HIF-1α) accumulation completely abrogated the tube formation in wild-type (WT) PMVEC. With ischemia in vivo (femoral artery ligation), revascularization was high in WT mice and was significantly decreased in mice with knockout of K(ATP) channel and in mice orally fed with a K(ATP) channel agonist. In transgenic mice with endothelial-specific NOX2 expression, the revascularization observed was intermediate between that of WT and knockout of K(ATP) channel or NOX2. Increased HIF-1α activation and vascular endothelial growth factor (VEGF) expression was observed in ischemic tissue of WT mice but not in K(ATP) channel and NOX2 null mice. Revascularization could be partially rescued in K(ATP) channel null mice by delivering VEGF into the hind limb. INNOVATION: This is the first report of a mechanosensitive ion channel (K(ATP) channel) initiating endothelial signaling that drives revascularization. CONCLUSION: The K(ATP) channel responds to the stop of flow and activates signals for revascularization to restore the impeded blood flow.


Assuntos
Canais KATP/metabolismo , Mecanotransdução Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Heme Oxigenase-1/metabolismo , Humanos , Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 302(1): H105-14, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22003059

RESUMO

Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K) in shear-associated signaling. Pulmonary microvascular endothelial cells in perfused lungs subjected to abrupt stop of flow showed membrane depolarization and ROS generation. Stop of flow in flow-adapted mouse pulmonary microvascular endothelial cells in vitro resulted in the activation of PI3K and Akt as well as ROS generation. ROS generation in the lungs in situ was almost abolished by the PI3K inhibitor wortmannin and the PKC inhibitor H7. The combination of the two (wortmannin and H7) did not have a greater effect. Activation of NOX2 was greatly diminished by wortmannin, knockout of Akt1, or dominant negative PI3K, whereas membrane depolarization was unaffected. Ischemia-induced Akt activation (phosphorylation) was not observed with K(ATP) channel-null cells, which showed minimal changes in membrane potential with ischemia. Activation of Akt was similar to wild-type cells in NOX2-null cells, which do not generate ROS with ischemia. Cromakalim, a K(ATP) channel agonist, prevented both membrane depolarization and Akt phosphorylation with ischemia. Thus, Akt1 phosphorylation follows cell membrane depolarization and precedes the activation of NOX2. These results indicate that PI3K/Akt and PKC serve as mediators between endothelial cell membrane depolarization and NOX2 assembly.


Assuntos
Células Endoteliais/enzimologia , Isquemia/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Isquemia/genética , Masculino , Glicoproteínas de Membrana/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neuropeptídeos/metabolismo , Perfusão , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
6.
Annu Rev Physiol ; 74: 403-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22077215

RESUMO

The lung endothelium is exposed to mechanical stimuli through shear stress arising from blood flow and responds to altered shear by activation of NADPH (NOX2) to generate reactive oxygen species (ROS). This review describes the pathway for NOX2 activation and the downstream ROS-mediated signaling events on the basis of studies of isolated lungs and flow-adapted endothelial cells in vitro that are subjected to acute flow cessation (ischemia). Altered mechanical stress is detected by a cell-associated complex involving caveolae and other membrane proteins that results in endothelial cell membrane depolarization and then the activation of specific kinases that lead to the assembly of NOX2 components. ROS generated by this enzyme amplify the mechanosignal within the endothelial cell to regulate activation and/or synthesis of proteins that participate in cell growth, proliferation, differentiation, apoptosis, and vascular remodeling. These responses indicate an important role for NOX2-derived ROS associated with mechanotransduction in promoting vascular homeostasis.


Assuntos
Células Endoteliais/fisiologia , Endotélio/fisiologia , Pulmão/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Humanos , Canais Iônicos/fisiologia , Pulmão/metabolismo , Mecanotransdução Celular/fisiologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , NADPH Oxidases/fisiologia , Circulação Pulmonar/fisiologia , Transdução de Sinais/genética , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA