Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 97(1): 1-7, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19648025

RESUMO

Photodynamic inactivation (PDI) of bacterial strains presents an attractive potential alternative to antibiotic therapies. Success is dependent on the effective accumulation in bacterial cells of photochemical substances called photosensitizers, which are usually porphyrins. It is also important to know the distribution of the photosensitizer in bacteria at the microscopic level. The present results examine the accumulation of photosensitizers by Mycobacterium phlei and Mycobacterium smegmatis, which serve as models for the important pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium bovis. The kinetics of porphyrin synthesis after treatment with the precursors ALA and h-ALA were studied. The goal was to describe the biosynthesis and the pharmacokinetics of sensitizers in both bacterial strains using fluorescence microscopy and spectroscopy. We could show that both Mycobacterium strains enrich porphyrins after ALA and h-ALA administration detected by fluorescence peaks at about 620nm. By HPLC analyses the major porphyrin could be identified as coproporphyrin. In the future we will apply the new knowledge in in vitro and in vivo experiments to strains of M. tuberculosis, M. leprae and M. bovis and examine cell destruction by PDI.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/metabolismo , Mycobacterium phlei/metabolismo , Mycobacterium smegmatis/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/biossíntese , Luz , Mycobacterium phlei/efeitos da radiação , Mycobacterium smegmatis/efeitos da radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA