Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Eur Phys J C Part Fields ; 82(4): 284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464994

RESUMO

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Q ß ß = 2039  keV, while preserving ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.

3.
Eur Phys J C Part Fields ; 81(6): 505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720720

RESUMO

Neutrinoless double- ß decay of 76 Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76 Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double- ß decay of 76 Ge ( Q ß ß  = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg · year, the background index after analysis cuts is measured to be 4 . 9 - 3.4 + 7.3 × 10 - 4 counts / ( keV · kg · year ) around Q ß ß . This work confirms the feasibility of IC detectors for the next-generation experiment Legend.

4.
Eur Phys J C Part Fields ; 81(8): 682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776783

RESUMO

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- ß decay in 76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q ß ß = 2039.061 ( 7 )  keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- ß decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular 228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.

5.
Phys Rev Lett ; 126(18): 181802, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018798

RESUMO

The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νßß experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νßß decay in ^{100}Mo. With more than one year of operation (^{100}Mo exposure of 1.17 kg×yr for physics data), no event in the region of interest and, hence, no evidence for 0νßß is observed. We report a new limit on the half-life of 0νßß decay in ^{100}Mo of T_{1/2}>1.5×10^{24} yr at 90% C.I. The limit corresponds to an effective Majorana neutrino mass ⟨m_{ßß}⟩<(0.31-0.54) eV, dependent on the nuclear matrix element in the light Majorana neutrino exchange interpretation.

6.
Phys Rev Lett ; 125(1): 011801, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678643

RESUMO

We present the first search for bosonic superweakly interacting massive particles (super-WIMPs) as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-ß decay experiment which operates high-purity germanium detectors enriched in ^{76}Ge in an ultralow background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c^{2} to 1 MeV/c^{2}. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c^{2} have been set. As an example, at a mass of 150 keV/c^{2} the most stringent direct limits on the dimensionless couplings of axionlike particles and dark photons to electrons of g_{ae}<3×10^{-12} and α^{'}/α<6.5×10^{-24} at 90% credible interval, respectively, were obtained.

7.
Phys Rev Lett ; 125(25): 252502, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416389

RESUMO

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-ß (0νßß) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νßß decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.

8.
Eur Phys J C Part Fields ; 79(11): 978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885491

RESUMO

The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.

9.
Science ; 365(6460): 1445-1448, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31488705

RESUMO

A discovery that neutrinos are Majorana fermions would have profound implications for particle physics and cosmology. The Majorana character of neutrinos would make possible the neutrinoless double-ß (0νßß) decay, a matter-creating process without the balancing emission of antimatter. The GERDA Collaboration searches for the 0νßß decay of 76Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T 1/2 > 0.9 × 1026 years (90% C.L.). Our T 1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the latter with those from other 0νßß decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 to 0.16 electron volts.

10.
Phys Rev Lett ; 120(21): 211804, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883176

RESUMO

The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.

11.
J Environ Radioact ; 190-191: 134-140, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29793183

RESUMO

The main limitation in the high-sensitive HPGe gamma-ray spectrometry has been the detector background, even for detectors placed deep underground. Environmental radionuclides such as 40K and decay products in the 238U and 232Th chains have been identified as the most important radioactive contaminants of construction parts of HPGe gamma-ray spectrometers. Monte Carlo simulations have shown that the massive inner and outer lead shields have been the main contributors to the HPGe-detector background, followed by aluminum cryostat, copper cold finger, detector holder and the lead ring with FET. The Monte Carlo simulated cosmic-ray background gamma-ray spectrum has been by about three orders of magnitude lower than the experimental spectrum measured in the Modane underground laboratory (4800 m w.e.), underlying the importance of using radiopure materials for the construction of ultra-low-level HPGe gamma-ray spectrometers.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos/análise , Espectrometria gama , Simulação por Computador , França , Raios gama , Laboratórios , Método de Monte Carlo , Radioisótopos , Tório/análise , Urânio/análise
12.
Phys Rev Lett ; 120(13): 132503, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694176

RESUMO

The GERDA experiment searches for the lepton-number-violating neutrinoless double-ß decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νßß experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.

13.
Phys Rev Lett ; 120(13): 132502, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694188

RESUMO

The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-ß decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ßß} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).

14.
Phys Rev Lett ; 118(16): 161801, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474933

RESUMO

We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting g_{Ae}<4.5×10^{-13} for pseudoscalars and (α^{'}/α)<9.7×10^{-28} for vectors. We also report a 14.4 keV solar axion coupling limit of g_{AN}^{eff}×g_{Ae}<3.8×10^{-17}, a 1/2ß^{2}<8.5×10^{-48} limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ_{e}>1.2×10^{24} yr for e^{-}→ invisible.

15.
Appl Radiat Isot ; 123: 54-59, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28242294

RESUMO

The BiPo-3 detector is a low radioactive detector dedicated to measuring ultra-low natural contaminations of 208Tl and 214Bi in thin materials, initially developed to measure the radiopurity of the double ß decay source foils of the SuperNEMO experiment at the µBq/kg level. The BiPo-3 technique consists in installing the foil of interest between two thin ultra-radiopure scintillators coupled to low radioactive photomultipliers. The design and performances of the detector are presented. In this paper, the final results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils are reported for the first time, showing the capability of the detector to reach sensitivities in the range of some µBq/kg.

16.
Eur Phys J C Part Fields ; 77(11): 785, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31997932

RESUMO

This paper reports on the development of a technology involving 100 Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ∼ 1 kg ), high optical quality, radiopure 100 Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100 Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8 σ . Less than 10 µ Bq/kg activity of 232 Th ( 228 Th ) and 226 Ra in the crystals is ensured by boule recrystallization. The potential of 100 Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg × d exposure: the two neutrino double-beta decay half-life of 100 Mo has been measured with the up-to-date highest accuracy as T 1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10 18 years . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100 Mo .

17.
Phys Rev Lett ; 119(4): 041801, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341770

RESUMO

We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-ß decay of ^{150}Nd using a total exposure of 0.19 kg yr recorded with the NEMO-3 detector at the Modane Underground Laboratory. We find no evidence of this decay and set lower limits on the half-life in the range T_{1/2}>(1.1-3.2)×10^{21} yr at the 90% C.L., depending on the model used for the kinematic distributions of the emitted electrons.

18.
Phys Rev Lett ; 111(12): 122503, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093254

RESUMO

Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

19.
J Environ Radioact ; 114: 66-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22498792

RESUMO

The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 µBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 µBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass.


Assuntos
Poluentes Radioativos do Ar/análise , Acidente Nuclear de Fukushima , Radioisótopos/análise , Agaricales/química , Contaminação Radioativa de Alimentos/análise , França , Japão , Poaceae/química , Monitoramento de Radiação , Radioatividade
20.
Phys Rev Lett ; 107(6): 062504, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902318

RESUMO

We report results from the NEMO-3 experiment based on an exposure of 1275 days with 661 g of (130)Te in the form of enriched and natural tellurium foils. The ßß decay rate of (130)Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T(½)(2ν) = [7.0 ± 0.9(stat) ± 1.1(syst)] × 10(20) yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA