Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(4): 109042, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910000

RESUMO

5-hydroxymethylcytosine (5hmC) undergoes dynamic changes during mammalian brain development, and its dysregulation is associated with Alzheimer's disease (AD). The dynamics of 5hmC during early human brain development and how they contribute to AD pathologies remain largely unexplored. We generate 5hmC and transcriptome profiles encompassing several developmental time points of healthy forebrain organoids and organoids derived from several familial AD patients. Stage-specific differentially hydroxymethylated regions demonstrate an acquisition or depletion of 5hmC modifications across developmental stages. Additionally, genes concomitantly increasing or decreasing in 5hmC and gene expression are enriched in neurobiological or early developmental processes, respectively. Importantly, our AD organoids corroborate cellular and molecular phenotypes previously observed in human AD brains. 5hmC is significantly altered in developmentally programmed 5hmC intragenic regions in defined fetal histone marks and enhancers in AD organoids. These data suggest a highly coordinated molecular system that may be dysregulated in these early developing AD organoids.


Assuntos
5-Metilcitosina/análogos & derivados , Doença de Alzheimer/genética , Neurogênese/genética , Organoides/embriologia , Prosencéfalo/embriologia , 5-Metilcitosina/metabolismo , Animais , Humanos , Camundongos
2.
Epigenetics ; 15(1-2): 72-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31378140

RESUMO

DNA methylation is dynamically modulated during postnatal brain development, and plays a key role in neuronal lineage commitment. This epigenetic mark has also recently been implicated in the development of neural sex differences, many of which are found in the hypothalamus. The level of DNA methylation depends on a balance between the placement of methyl marks by DNA methyltransferases (Dnmts) and their removal, which is catalyzed by ten-eleven translocation (Tet) methylcytosine dioxygenases. Here, we examined developmental changes and sex differences in the expression of Tet and Dnmt enzymes from birth to adulthood in two hypothalamic regions (the preoptic area and ventromedial nucleus) and the hippocampus of mice. We found highest expression of all Tet enzymes (Tet1, Tet2, Tet3) and Dnmts (Dnmt1, Dnmt3a, Dnmt3b) in newborns, despite the fact that global methylation and hydroxymethylation were at their lowest levels at birth. Expression of the Dnmt co-activator, Dnmt3l, followed a pattern opposite to that of the canonical Dnmts (i.e., was very low in newborns and increased with age). Tet enzyme activity was much higher at birth than at weaning in both the hypothalamus and hippocampus, mirroring developmental changes in gene expression. Sex differences in Tet enzyme expression were seen in all brain regions examined during the first week of life, whereas Dnmt expression was more balanced between the sexes. Neonatal testosterone treatment of females only partially masculinized enzyme expression. Thus, Tet expression and activity are elevated during neonatal brain development, and may play important roles in sexual differentiation of the brain.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Feminino , Hipotálamo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Fatores Sexuais
3.
Bioinformatics ; 36(2): 539-545, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31373611

RESUMO

MOTIVATION: Circular RNAs (circRNAs), a class of non-coding RNAs generated from non-canonical back-splicing events, have emerged to play key roles in many biological processes. Though numerous tools have been developed to detect circRNAs from rRNA-depleted RNA-seq data based on back-splicing junction-spanning reads, computational tools to identify critical genomic features regulating circRNA biogenesis are still lacking. In addition, rigorous statistical methods to perform differential expression (DE) analysis of circRNAs remain under-developed. RESULTS: We present circMeta, a unified computational framework for circRNA analyses. circMeta has three primary functional modules: (i) a pipeline for comprehensive genomic feature annotation related to circRNA biogenesis, including length of introns flanking circularized exons, repetitive elements such as Alu elements and SINEs, competition score for forming circulation and RNA editing in back-splicing flanking introns; (ii) a two-stage DE approach of circRNAs based on circular junction reads to quantitatively compare circRNA levels and (iii) a Bayesian hierarchical model for DE analysis of circRNAs based on the ratio of circular reads to linear reads in back-splicing sites to study spatial and temporal regulation of circRNA production. Both proposed DE methods without and with considering host genes outperform existing methods by obtaining better control of false discovery rate and comparable statistical power. Moreover, the identified DE circRNAs by the proposed two-stage DE approach display potential biological functions in Gene Ontology and circRNA-miRNA-mRNA networks that are not able to be detected using existing mRNA DE methods. Furthermore, top DE circRNAs have been further validated by RT-qPCR using divergent primers spanning back-splicing junctions. AVAILABILITY AND IMPLEMENTATION: The software circMeta is freely available at https://github.com/lichen-lab/circMeta. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Teorema de Bayes , Biologia Computacional , RNA , Splicing de RNA , RNA Circular , RNA Mensageiro
4.
Front Genet ; 10: 268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019524

RESUMO

Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.

5.
Endocrinology ; 159(12): 4006-4022, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380028

RESUMO

In the current study, we sought to determine the significance of the ghrelin system in Prader-Willi Syndrome (PWS). PWS is characterized by hypotonia and difficulty feeding in neonates and hyperphagia and obesity beginning later in childhood. Other features include low GH, neonatal hypoglycemia, hypogonadism, and accelerated mortality. Although the hyperphagia and obesity in PWS have been attributed to elevated levels of the orexigenic hormone ghrelin, this link has never been firmly established, nor have ghrelin's potentially protective actions to increase GH secretion, blood glucose, and survival been investigated in a PWS context. In the current study, we show that placing Snord116del mice modeling PWS on ghrelin-deficient or ghrelin receptor [GH secretagogue receptor (GHSR)]-deficient backgrounds does not impact their characteristically reduced body weight, lower plasma IGF-1, delayed sexual maturation, or increased mortality in the period prior to weaning. However, blood glucose was further reduced in male Snord116del pups on a ghrelin-deficient background, and percentage body weight gain and percentage fat mass were further reduced in male Snord116del pups on a GHSR-deficient background. Strikingly, 2 weeks of daily administration of the GHSR agonist HM01 to Snord116del neonates markedly improved survival, resulting in a nearly complete rescue of the excess mortality owing to loss of the paternal Snord116 gene. These data support further exploration of the therapeutic potential of GHSR agonist administration in limiting PWS mortality, especially during the period characterized by failure to thrive.


Assuntos
Piperidinas/uso terapêutico , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/mortalidade , RNA Nucleolar Pequeno/genética , Receptores de Grelina/agonistas , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/farmacologia , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia
6.
Endocrinology ; 159(1): 145-162, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145563

RESUMO

Aberrant neuronal DNA methylation patterns have been implicated in the promotion of obesity development; however, the role of neuronal DNA methyltransferases (Dnmts), enzymes that catalyze DNA methylation, in energy balance remains poorly understood. We investigated whether neuronal Dnmt1 regulates normal energy homeostasis and obesity development using a neuronal Dnmt1 knockout (ND1KO) mouse model, Dnmt1fl/fl Synapsin1Cre, which specifically deletes Dnmt1 in neurons. Neuronal Dnmt1 deficiency reduced adiposity in chow-fed mice and attenuated obesity in high-fat diet (HFD)-fed male mice. ND1KO male mice had reduced food intake and increased energy expenditure with the HFD. Furthermore, these mice had improved insulin sensitivity, as measured using an insulin tolerance test. The HFD-fed ND1KO mice had smaller fat pads and upregulation of thermogenic genes in brown adipose tissue. These data suggest that neuronal Dnmt1 plays an important role in regulating energy homeostasis. Notably, ND1KO male mice had elevated estrogen receptor-α (ERα) gene expression in the medial hypothalamus, which previously has been shown to control body weight. Immunohistochemistry experiments revealed that ERα protein expression was upregulated specifically in the dorsomedial region of the ventromedial hypothalamus, a region that might mediate the central effect of leptin. We conclude that neuronal Dnmt1 regulates energy homeostasis through pathways controlling food intake and energy expenditure. In addition, ERα expression in the dorsomedial region of the ventromedial hypothalamus might mediate these effects.


Assuntos
Adiposidade , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metabolismo Energético , Hipotálamo Médio , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Cruzamentos Genéticos , DNA (Citosina-5-)-Metiltransferase 1/deficiência , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Hipotálamo Médio/enzimologia , Hipotálamo Médio/metabolismo , Hipotálamo Médio/patologia , Resistência à Insulina , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Obesidade/etiologia , Obesidade/patologia , Obesidade/prevenção & controle , Regiões Promotoras Genéticas , Caracteres Sexuais
7.
Pharmacol Biochem Behav ; 99(3): 356-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21624392

RESUMO

High energy diets can have a detrimental effect on brain plasticity. For example, a high fructose diet impairs spatial memory in male rats. The aim of the present study was to determine whether a high fructose diet impairs another form of learning and memory: drug reinforcement learning. Female Sprague-Dawley rats were fed a high fructose diet (60%) from weaning at postnatal day (PND) 21, then allowed to acquire lever-pressing maintained by intravenous (i.v.) amphetamine at PND 68, 109, or 165. Acquisition was tested on a fixed ratio one (FR1) schedule of reinforcement (0.025 mg/kg/infusion, 1h daily sessions, 10 sessions over 14 days), followed by testing for reinforcing efficacy on a progressive ratio (PR) schedule (0.025, 0.01, and 0.1mg/kg/infusion), 14 days of abstinence, and within-session extinction and reinstatement tests. Subsequently, water maze acquisition and retention were tested in these subjects as well as a separate cohort tested in the water maze only. The diet had no effect on acquisition, reinforcing efficacy, extinction, or reinstatement of amphetamine seeking. Nor did the diet alter any measures of spatial memory. The high fructose diet did decrease body mass and increase relative liver and spleen mass, but did not affect plasma triglyceride concentrations consistently. Together with prior research on males, these results suggest that the metabolism of fructose and the effects of a high fructose diet on learning and memory may be sex-dependent.


Assuntos
Anfetamina/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Frutose/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA