Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 150, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209116

RESUMO

BACKGROUND: Several mosquito collection methods are routinely used in vector control programmes. However, they target different behaviours causing bias in estimation of species diversity and abundance. Given the paucity of mosquito trap data in West Africa, we compared the performance of five trap-lure combinations and Human Landing Catches (HLCs) in Guinea. METHODS: CDC light traps (LT), BG sentinel 2 traps (BG2T), gravid traps (GT) and Stealth traps (ST) were compared in a 5 × 5 Latin Square design in three villages in Guinea between June and July 2018. The ST, a portable trap which performs similarly to a LT but incorporates LEDs and incandescent light, was included since it has not been widely tested. BG2T were used with BG and MB5 lures instead of CO2 to test the efficacy of these attractants. HLCs were performed for 5 nights, but not as part of the Latin Square. A Generalised Linear Mixed Model was applied to compare the effect of the traps, sites and collection times on mosquito abundance. Species identification was confirmed using PCR-based analysis and Sanger sequencing. RESULTS: A total of 10,610 mosquitoes were captured across five traps. ST collected significantly more mosquitoes (7096) than the rest of the traps, but resulted in a higher number of damaged specimens. ST and BG2T collected the highest numbers of Anopheles gambiae (s.l.) and Aedes aegypti mosquitoes, respectively. HLCs captured predominantly An. coluzzii (41%) and hybrids of An. gambiae and An. coluzzii (36%) in contrast to the five traps, which captured predominantly An. melas (83%). The rural site (Senguelen) presented the highest abundance of mosquitoes and overall diversity in comparison with Fandie (semi-rural) and Maferinyah Centre I (semi-urban). Our results confirm the presence of four species for the first time in Guinea. CONCLUSIONS: ST collected the highest number of mosquitoes suggesting this trap may play an important role for mosquito surveillance in Guinea and similar sites in West Africa. We recommend the incorporation of molecular tools in entomological studies since they have helped to identify 25 mosquito species in this area.


Assuntos
Culicidae , Entomologia/instrumentação , Entomologia/métodos , Animais , Anopheles , Biodiversidade , Dióxido de Carbono , Culicidae/classificação , Feminino , Guiné , Humanos , Luz , Masculino , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Pesquisa
2.
Parasit Vectors ; 13(1): 139, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178710

RESUMO

BACKGROUND: Culicoides biting midges are biological vectors of arboviruses including bluetongue virus (BTV), Schmallenberg virus (SBV) and African horse sickness virus (AHSV). Zoos are home to a wide range of 'at risk' exotic and native species of animals. These animals have a high value both in monetary terms, conservation significance and breeding potential. To understand the risk these viruses pose to zoo animals, it is necessary to characterise the Culicoides fauna at zoos and determine which potential vector species are feeding on which hosts. METHODS: Light-suction traps were used at two UK zoos: the Zoological Society of London (ZSL) London Zoo (LZ) and ZSL Whipsnade Zoo (WZ). Traps were run one night each week from June 2014 to June 2015. Culicoides were morphologically identified to the species level and any blood-fed Culicoides were processed for blood-meal analysis. DNA from blood meals was extracted and amplified using previously published primers. Sequencing was then carried out to determine the host species. RESULTS: A total of 11,648 Culicoides were trapped and identified (n = 5880 from ZSL WZ; n = 5768 from ZSL LZ), constituting 25 different species. The six putative vectors of BTV, SBV and AHSV in northern Europe were found at both zoos and made up the majority of the total catch (n = 10,701). A total of 31 host sequences were obtained from blood-fed Culicoides. Culicoides obsoletus/C. scoticus, Culicoides dewulfi, Culicoides parroti and Culicoides punctatus were found to be biting a wide range of mammals including Bactrian camels, Indian rhinoceros, Asian elephants and humans, with Culicoides obsoletus/C. scoticus also biting Darwin's rhea. The bird-biting species, Culicoides achrayi, was found to be feeding on blackbirds, blue tits, magpies and carrion crows. CONCLUSIONS: To our knowledge, this is the first study to directly confirm blood-feeding of Culicoides on exotic zoo animals in the UK and shows that they are able to utilise a wide range of exotic as well as native host species. Due to the susceptibility of some zoo animals to Culicoides-borne arboviruses, this study demonstrates that in the event of an outbreak of one of these viruses in the UK, preventative and mitigating measures would need to be taken.


Assuntos
Animais de Zoológico/sangue , Ceratopogonidae/classificação , Comportamento Alimentar , Animais , Feminino , Insetos Vetores/classificação , Masculino , Análise de Sequência de DNA , Reino Unido
3.
Sci Rep ; 9(1): 11412, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388090

RESUMO

Mosquito surveillance is a fundamental component of planning and evaluating vector control programmes. However, logistical and cost barriers can hinder the implementation of surveillance, particularly in vector-borne disease-endemic areas and in outbreak scenarios in remote areas where the need is often most urgent. The increasing availability and reduced cost of 3D printing technology offers an innovative approach to overcoming these challenges. In this study, we assessed the field performance of a novel, lightweight 3D-printed mosquito light trap baited with carbon dioxide (CO2) in comparison with two gold-standard traps, the Centers for Disease Control and Prevention (CDC) light trap baited with CO2, and the BG Sentinel 2 trap with BG-Lure and CO2. Traps were run for 12 nights in a Latin square design at Rainham Marshes, Essex, UK in September 2018. The 3D-printed trap showed equivalent catch rates to the two commercially available traps. The 3D-printed trap designs are distributed free of charge in this article with the aim of assisting entomological field studies across the world.


Assuntos
Aedes , Monitorização de Parâmetros Ecológicos/instrumentação , Luz , Mosquitos Vetores , Impressão Tridimensional/economia , Animais , Dióxido de Carbono/química , Monitorização de Parâmetros Ecológicos/economia , Desenho de Equipamento , Software , Reino Unido
4.
Artigo em Inglês | MEDLINE | ID: mdl-29473903

RESUMO

Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.


Assuntos
Aves/virologia , Culex/virologia , Insetos Vetores/virologia , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/patogenicidade , Animais , Europa (Continente)/epidemiologia , Humanos , Fenótipo
5.
J Appl Ecol ; 54(5): 1429-1439, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29104309

RESUMO

Culicoides biting midges (Diptera, Ceratopogonidae) are vectors of arboviruses that cause significant economic and welfare impact. Local-scale spread of Culicoides-borne arboviruses is largely determined by the between-farm movement of infected Culicoides.Study of the dispersal behaviour of Culicoides by capture-mark-recapture (CMR) is problematic due to the likelihood of mortality and changes in behaviour upon capture caused by the small size and fragility of these insects, evidenced by low recapture rates. To counter the problem of using CMR with Culicoides, this study utilised an ovalbumin immunomarking technique to quantify the within- and between-farm dispersal of Culicoides in southern England.Both within- and between-farm dispersal of Culicoides was observed. Of the 9058 Culicoides collected over 22 nights of trapping, 600 ovalbumin-positive Culicoides, of 12 species including those implicated as arbovirus vectors, were collected with a maximum dispersal distance of 3125 m.This study provides the first species-level data on the between-farm dispersal of potential bluetongue, Schmallenberg and African horse sickness virus vectors in northern Europe. High-resolution meteorological data determined upwind and downwind flight by Culicoides had occurred. Cumulative collection and meteorological data suggest 15·6% of flights over 1 km were upwind of the treatment area and 84·4% downwind. Synthesis and applications. The use of immunomarking eliminates the potential adverse effects on survival and behaviour of insect collection prior to marking, substantially improving the resolution and accuracy of estimates of the dispersal potential of small and delicate vector species such as Culicoides. Using this technique, quantification of the range of Culicoides dispersal with regard to meteorological conditions including wind direction will enable improved, data-driven modelling of the spread of Culicoides-borne arboviruses and will inform policy response to incursions and outbreaks.

6.
Parasit Vectors ; 10(1): 420, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915829

RESUMO

BACKGROUND: This field-based study examined the abundance and species complement of mosquitoes (Diptera: Culicidae) attracted to humans at four sites in the United Kingdom (UK). The study used a systematic approach to directly measure feeding by mosquitoes on humans at multiple sites and using multiple volunteers. Quantifying how frequently humans are bitten in the field by mosquitoes is a fundamental parameter in assessing arthropod-borne virus transmission. METHODS: Human landing catches were conducted using a standardised protocol by multiple volunteers at four rural sites between July and August 2013. Collections commenced two hours prior to sunset and lasted for a total of four hours. To reduce bias occurring due to collection point or to the individual attractiveness of the volunteer to mosquitoes, each collection was divided into eight collection periods, with volunteers rotated by randomised Latin square design between four sampling points per site. While the aim was to collect mosquitoes prior to feeding, the source of blood meals from any engorged specimens was also identified by DNA barcoding. RESULTS: Three of the four sites yielded human-biting mosquito populations for a total of 915 mosquitoes of fifteen species/species groups. Mosquito species composition and biting rates differed significantly between sites, with individual volunteers collecting between 0 and 89 mosquitoes (over 200 per hour) of up to six species per collection period. Coquillettidia richiardii (Ficalbi, 1889) was responsible for the highest recorded biting rates at any one site, reaching 161 bites per hour, whilst maximum biting rates of 55 bites per hour were recorded for Culex modestus (Ficalbi, 1889). Human-biting by Culex pipiens (L., 1758) form pipiens was also observed at two sites, but at much lower rates when compared to other species. CONCLUSIONS: Several mosquito species are responsible for human nuisance biting pressure in southern England, although human exposure to biting may be largely limited to evening outdoor activities. This study indicates Cx. modestus can be a major human-biting species in the UK whilst Cx. pipiens f. pipiens may show greater opportunistic human-biting than indicated by earlier studies.


Assuntos
Culicidae , Mordeduras e Picadas de Insetos/epidemiologia , Animais , Anopheles/fisiologia , Sangue/virologia , Culex/fisiologia , Culicidae/classificação , Culicidae/fisiologia , Culicidae/virologia , Comportamento Alimentar , Humanos , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Análise Espaço-Temporal , Reino Unido/epidemiologia , Viroses/transmissão
7.
Parasit Vectors ; 8: 421, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26271277

RESUMO

BACKGROUND: Determining the host feeding patterns of mosquitoes by identifying the origin of their blood-meals is an important part of understanding the role of vector species in current and future disease transmission cycles. Collecting large numbers of blood-fed mosquitoes from the field is difficult, therefore it is important to maximise the information obtained from each specimen. This study aimed to use mosquito genome sequence to identify the species within Anopheles maculipennis sensu lato (An. maculipennis s.l.), identify the vertebrate hosts of field-caught blood-fed An. maculipennis s.l. , and to test for the presence of myxoma virus (Poxviridae, genus Leporipoxvirus) in specimens found to have fed on the European rabbit (Oryctolagus cuniculus). METHODS: Blood-fed An. maculipennis s.l. were collected from resting sites at Elmley Nature Reserve, Kent, between June and September 2013. Hosts that An. maculipennis s.l. had fed on were determined by a PCR-sequencing approach based on the partial amplification of the mitochondrial cytochrome C oxidase subunit I gene. Mosquitoes were then identified to species by sequencing a region of the internal transcribed spacer-2. DNA extracts from all mosquitoes identified as having fed on rabbits were subsequently screened using PCR for the presence of myxoma virus. RESULTS: A total of 94 blood-fed Anopheles maculipennis s.l. were collected, of which 43 (46%) provided positive blood-meal identification results. Thirty-six of these specimens were identified as Anopheles atroparvus, which had fed on rabbit (n = 33, 92%) and cattle (n = 3, 8%). Seven mosquitoes were identified as Anopheles messeae, which had fed on cattle (n = 6, 86%) and dog (n = 1, 14%). Of the 33 An. atroparvus that contained rabbit blood, nine (27%) were positive for myxoma virus. CONCLUSIONS: Results demonstrate that a single DNA extract from a blood-fed mosquito can be successfully used for molecular identification of members of the An. maculipennis complex, blood-meal identification, and for the targeted detection of a myxoma virus. This study shows that An. atroparvus has a strong feeding preference for both healthy and myxoma-infected rabbits, providing evidence that this species may play a significant role in the transmission of myxomatosis among wild rabbit populations in the United Kingdom (UK).


Assuntos
Anopheles/virologia , Myxoma virus/isolamento & purificação , Animais , Inglaterra/epidemiologia , Mixomatose Infecciosa/sangue , Mixomatose Infecciosa/epidemiologia , Mixomatose Infecciosa/virologia , Reação em Cadeia da Polimerase , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA