Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(3): e0019824, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38386597

RESUMO

Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.


Assuntos
Malária Falciparum , Plasmodium , Animais , Humanos , Subtilisina/metabolismo , Merozoítos/fisiologia , Dimerização , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Eritrócitos/parasitologia , Concentração de Íons de Hidrogênio
2.
Protein Sci ; 32(8): e4703, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37338125

RESUMO

Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.


Assuntos
Trifosfato de Adenosina , IMP Desidrogenase , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Bactérias/metabolismo , Inosina
3.
NPJ Biofilms Microbiomes ; 9(1): 6, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697414

RESUMO

The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-ß amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation.


Assuntos
Proteínas Amiloidogênicas , Biofilmes , Candida albicans , Parede Celular , Proteínas Fúngicas , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(50): e2214599119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469781

RESUMO

The bacterial cell wall is a multi-layered mesh, whose major component is peptidoglycan (PG), a sugar polymer cross-linked by short peptide stems. During cell division, a careful balance of PG synthesis and degradation, precisely coordinated both in time and space, is necessary to prevent uncontrolled destruction of the cell wall. In Corynebacteriales, the D,L endopeptidase RipA has emerged as a major PG hydrolase for cell separation, and RipA defaults have major implications for virulence of the human pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. However, the precise mechanisms by which RipA mediates cell separation remain elusive. Here we report phylogenetic, biochemical, and structural analysis of the Corynebacterium glutamicum homologue of RipA, Cg1735. The crystal structures of full-length Cg1735 in two different crystal forms revealed the C-terminal NlpC/P60 catalytic domain obtruded by its N-terminal conserved coiled-coil domain, which locks the enzyme in an autoinhibited state. We show that this autoinhibition is relieved by the extracellular core domain of the transmembrane septal protein Cg1604. The crystal structure of Cg1604 revealed a (ß/α) protein with an overall topology similar to that of receiver domains from response regulator proteins. The atomic model of the Cg1735-Cg1604 complex, based on bioinformatical and mutational analysis, indicates that a conserved, distal-membrane helical insertion in Cg1604 is responsible for Cg1735 activation. The reported data provide important insights into how intracellular cell division signal(s), yet to be identified, control PG hydrolysis during RipA-mediated cell separation in Corynebacteriales.


Assuntos
Actinomycetales , Proteínas de Bactérias , Actinomycetales/citologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Filogenia
5.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36268793

RESUMO

The morphology, 16S rRNA gene phylogeny and 16S-23S rRNA gene ITS secondary structures of three strains of marine Cyanobacteria, isolated from inter- and subtidal environments from north Portugal were studied, resulting in the description of Zarconia navalis gen. nov., sp. nov. (Oscillatoriales incertae sedis), Romeriopsis navalis gen. nov., sp. nov. (Leptolyngbyaceae) and Romeriopsis marina sp. nov., named under the International Code of Nomenclature for algae, fungi, and plants. No diacritical morphological characters were found for the new genera and species. The 16S rRNA gene maximum-likelihood and Bayesian phylogenies supported that the genus Zarconia is a member of the Oscillatoriales, morphologically similar to the genera Microcoleus and Phormidium, but distant from them. The genus Romeriopsis is positioned within the Leptolyngbyaceae (Synechococcales) and is closely related to Alkalinema. The secondary structures of the D1-D1', Box B, V2 and V3 helices corroborate the phylogenetic results. Furthermore, our study supports previous observations of polyphyletic Oscillatoriales families and reinforces the need for their taxonomic revision.


Assuntos
Cianobactérias , Ácidos Graxos , Humanos , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Teorema de Bayes , Portugal , Composição de Bases , Ácidos Graxos/química
6.
EMBO Rep ; 23(7): e53600, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35607830

RESUMO

The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.


Assuntos
Vírus da Dengue , Dengue , Dengue/metabolismo , Vírus da Dengue/fisiologia , Humanos , Lipoproteínas HDL/metabolismo , Fagocitose , Proteínas não Estruturais Virais/metabolismo
8.
Front Microbiol ; 13: 829094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283834

RESUMO

The C-terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein E contains a PBM (PDZ-binding motif) targeting PDZ (PSD-95/Dlg/ZO-1) domains, which is identical to the PBM of SARS-CoV. The latter is involved in the pathogenicity of the virus. Recently, we identified 10 human PDZ-containing proteins showing significant interactions with SARS-CoV-2 protein E PBM. We selected several of them involved in cellular junctions and cell polarity (TJP1, PARD3, MLLT4, and LNX2) and MPP5/PALS1 previously shown to interact with SARS-CoV E PBM. Targeting cellular junctions and polarity components is a common strategy by viruses to hijack cell machinery to their advantage. In this study, we showed that these host PDZ domains TJP1, PARD3, MLLT4, LNX2, and MPP5/PALS1 interact in a PBM-dependent manner in vitro and colocalize with the full-length E protein in cellulo, sequestrating the PDZ domains to the Golgi compartment. We solved three crystal structures of complexes between human LNX2, MLLT4, and MPP5 PDZs and SARS-CoV-2 E PBM highlighting its binding preferences for several cellular targets. Finally, we showed different affinities for the PDZ domains with the original SARS-CoV-2 C-terminal sequence containing the PBM and the one of the beta variant that contains a mutation close to the PBM. The acquired mutations in the E protein localized near the PBM might have important effects both on the structure and the ion-channel activity of the E protein and on the host machinery targeted by the variants during the infection.

9.
J Biol Chem ; 298(1): 101290, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678315

RESUMO

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteínas do Nucleocapsídeo/análise , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Cricetinae , Eletroforese em Gel de Poliacrilamida , Humanos , Limite de Detecção , Proteínas do Nucleocapsídeo/imunologia
10.
Front Pharmacol ; 12: 733496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603049

RESUMO

Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Altough bacterially derived mycolactone has been shown to traffic from cutaneous foci of infection to the bloodstream, the mechanisms underpinning its access to systemic circulation and import by host cells remain largely unknown. Using biophysical and cell-based approaches, we demonstrate that mycolactone specific association to serum albumin and lipoproteins is necessary for its solubilization and is a major mechanism to regulate its bioavailability. We also demonstrate that Scavenger Receptor (SR)-B1 contributes to the cellular uptake of mycolactone. Overall, we suggest a new mechanism of transport and cell entry, challenging the dogma that the toxin enters host cells via passive diffusion.

11.
Nucleic Acids Res ; 49(13): 7695-7712, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232992

RESUMO

The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.


Assuntos
COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Quadruplex G , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Sequência de Aminoácidos , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise Espectral , Relação Estrutura-Atividade , Replicação Viral
12.
Adv Sci (Weinh) ; 8(9): 2003630, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977052

RESUMO

The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Calmodulina/metabolismo , Células Eucarióticas/metabolismo , Domínios Proteicos/fisiologia , Sítios de Ligação/fisiologia , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
13.
Methods Mol Biol ; 2256: 89-124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014518

RESUMO

PDZ domains are small globular domains involved in protein-protein interactions. They participate in a wide range of critical cellular processes. These domains, very abundant in the human proteome, are widely studied by high-throughput interactomics approaches and by biophysical and structural methods. However, the quality of the results is strongly related to the optimal folding and solubility of the domains. We provide here a detailed description of protocols for a strict quality assessment of the PDZ constructs. We describe appropriate experimental approaches that have been selected to overcome the small size of such domains to check the purity, identity, homogeneity, stability, and folding of samples.


Assuntos
Biofísica , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios PDZ , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Sítios de Ligação , Eletroforese Capilar , Humanos , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica
14.
PLoS One ; 16(4): e0250610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914787

RESUMO

To stop the COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which caused more than 2.5 million deaths to date, new antiviral molecules are urgently needed. The replication of SARS-CoV-2 requires the RNA-dependent RNA polymerase (RdRp), making RdRp an excellent target for antiviral agents. RdRp is a multi-subunit complex composed of 3 viral proteins named nsp7, nsp8 and nsp12 that ensure the ~30 kb RNA genome's transcription and replication. The main strategies employed so far for the overproduction of RdRp consist of expressing and purifying the three subunits separately before assembling the complex in vitro. However, nsp12 shows limited solubility in bacterial expression systems and is often produced in insect cells. Here, we describe an alternative strategy to co-express the full SARS-CoV-2 RdRp in E. coli, using a single plasmid. Characterization of the purified recombinant SARS-CoV-2 RdRp shows that it forms a complex with the expected (nsp7)(nsp8)2(nsp12) stoichiometry. RNA polymerization activity was measured using primer-extension assays showing that the purified enzyme is functional. The purification protocol can be achieved in one single day, surpassing in speed all other published protocols. Our construct is ideally suited for screening RdRp and its variants against very large chemical compounds libraries and has been made available to the scientific community through the Addgene plasmid depository (Addgene ID: 165451).


Assuntos
Clonagem Molecular , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Escherichia coli/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , COVID-19/virologia , Clonagem Molecular/métodos , RNA-Polimerase RNA-Dependente de Coronavírus/isolamento & purificação , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo
15.
Methods Mol Biol ; 2263: 3-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877592

RESUMO

One essential prerequisite of any experiment involving a purified protein, such as interaction studies or structural and biophysical characterization, is to work with a "good-quality" sample in order to ensure reproducibility and reliability of the data. Here, we define a "good-quality" sample as a protein preparation that fulfills three criteria: (1) the preparation contains a protein that is pure and soluble and exhibits structural and functional integrity, (2) the protein must be structurally homogeneous, and (3) the preparation must be reproducible. To ensure effective quality control (QC) of all these parameters, we suggest to follow a simple workflow involving the use of gel electrophoresis, light scattering, and spectroscopic experiments. We describe the techniques used in every step of this workflow and provide easy-to-use standard protocols for each step.


Assuntos
Proteínas/química , Proteínas/isolamento & purificação , Difusão Dinâmica da Luz , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Estabilidade Proteica , Reprodutibilidade dos Testes , Fluxo de Trabalho
16.
Eur Biophys J ; 50(3-4): 587-595, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33486532

RESUMO

Intrinsic viscosity is a key hydrodynamic parameter to understand molecular structure and hydration, as well as intramolecular interactions. Commercially available instruments measure intrinsic viscosity by recording the macromolecular mobility in a capillary. These instruments monitor Taylor dispersion using an absorbance or fluorescence detector. By design, these instruments behave like U-tube viscometers. To our knowledge, there are no studies to date showing that the Viscosizer TD instrument (Malvern-Panalytical) is able to measure the intrinsic viscosity of macromolecules. In this study, we then performed our assays on the Poly(ethylene oxide) polymer (PEO), used classically as a standard for viscometry measurements and on three model proteins: the bovine serum albumin (BSA), the bevacizumab monoclonal antibody, and the RTX Repeat Domain (RD) of the adenylate cyclase toxin of Bordetella pertussis (CyaA). The presence of P20 in the samples is critical to get reliable results. The data obtained with our in-house protocol show a strong correlation with intrinsic viscosity values obtained using conventional techniques. However, with respect to them, our measurements could be performed at relatively low concentrations, between 2 and 5 mg/ml, using only 7 µL per injection. Altogether, our results show that the Viscosizer TD instrument is able to measure intrinsic viscosities in a straightforward manner. This simple and innovative approach should give a new boost to intrinsic viscosity measurements and should reignite the interest of biophysicists, immunologists, structural biologists and other researchers for this key physicochemical parameter.


Assuntos
Viscosidade , Polímeros , Soroalbumina Bovina
17.
J Mol Biol ; 432(22): 5920-5937, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32971111

RESUMO

Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios PDZ/fisiologia , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanilato Quinases/metabolismo , Humanos , Miosinas/metabolismo , Proteínas , Estereocílios/metabolismo
18.
J Clin Invest ; 130(3): 1330-1335, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31770111

RESUMO

Omalizumab is an anti-IgE monoclonal antibody (mAb) approved for the treatment of severe asthma and chronic spontaneous urticaria. Use of omalizumab is associated with reported side effects ranging from local skin inflammation at the injection site to systemic anaphylaxis. To date, the mechanisms through which omalizumab induces adverse reactions are still unknown. Here, we demonstrated that immune complexes formed between omalizumab and IgE can induce both skin inflammation and anaphylaxis through engagement of IgG receptors (FcγRs) in FcγR-humanized mice. We further developed an Fc-engineered mutant version of omalizumab, and demonstrated that this mAb is equally potent as omalizumab at blocking IgE-mediated allergic reactions, but does not induce FcγR-dependent adverse reactions. Overall, our data indicate that omalizumab can induce skin inflammation and anaphylaxis by engaging FcγRs, and demonstrate that Fc-engineered versions of the mAb could be used to reduce such adverse reactions.


Assuntos
Anafilaxia/imunologia , Toxidermias/imunologia , Mutação , Omalizumab/efeitos adversos , Receptores de IgG/imunologia , Anafilaxia/induzido quimicamente , Anafilaxia/genética , Anafilaxia/patologia , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Toxidermias/genética , Toxidermias/patologia , Camundongos , Camundongos Knockout , Omalizumab/genética , Omalizumab/farmacologia , Receptores de IgG/genética
19.
Vaccines (Basel) ; 7(4)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614804

RESUMO

Ticks are the most important vectors of pathogens affecting both domestic and wild animals worldwide. Hard tick feeding is a slow process-taking up to several days-and necessitates extended control over the host response. The success of the feeding process depends upon injection of tick saliva, which not only controls host hemostasis and wound healing, but also subverts the host immune response to avoid tick rejection that creates a favorable niche for the survival and propagation of diverse tick-borne pathogens. Here, we report on the molecular and biochemical features and functions of an Ixodes ricinus serine protease inhibitor (IrSPI). We characterize IrSPI as a Kunitz elastase inhibitor that is overexpressed in several tick organs-especially salivary glands-during blood-feeding. We also demonstrated that when IrSPI is injected into the host through saliva, it had no impact on tissue factor pathway-induced coagulation, fibrinolysis, endothelial cell angiogenesis or apoptosis, but the protein exhibits immunomodulatory activity. In particular, IrSPI represses proliferation of CD4+ T lymphocytes and proinflammatory cytokine secretion from both splenocytes and macrophages. Our study contributes valuable knowledge to tick-host interactions and provides insights that could be further exploited to design anti-tick vaccines targeting this immunomodulator implicated in I. ricinus feeding.

20.
Cell Microbiol ; 21(7): e13021, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30835870

RESUMO

Protozoan pathogens secrete nanosized particles called extracellular vesicles (EVs) to facilitate their survival and chronic infection. Here, we show the inhibition by Plasmodium berghei NK65 blood stage-derived EVs of the proliferative response of CD4+ T cells in response to antigen presentation. Importantly, these results were confirmed in vivo by the capacity of EVs to diminish the ovalbumin-specific delayed type hypersensitivity response. We identified two proteins associated with EVs, the histamine releasing factor (HRF) and the elongation factor 1α (EF-1α) that were found to have immunosuppressive activities. Interestingly, in contrast to WT parasites, EVs from genetically HRF- and EF-1α-deficient parasites failed to inhibit T cell responses in vitro and in vivo. At the level of T cells, we demonstrated that EVs from WT parasites dephosphorylate key molecules (PLCγ1, Akt, and ERK) of the T cell receptor signalling cascade. Remarkably, immunisation with EF-1α alone or in combination with HRF conferred a long-lasting antiparasite protection and immune memory. In conclusion, we identified a new mechanism by which P. berghei-derived EVs exert their immunosuppressive functions by altering T cell responses. The identification of two highly conserved immune suppressive factors offers new conceptual strategies to overcome EV-mediated immune suppression in malaria-infected individuals.


Assuntos
Biomarcadores Tumorais/genética , Vesículas Extracelulares/imunologia , Malária/genética , Fator 1 de Elongação de Peptídeos/genética , Animais , Apresentação de Antígeno/imunologia , Antígenos/genética , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Proliferação de Células/genética , Vesículas Extracelulares/genética , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Malária/parasitologia , Malária/patologia , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Linfócitos T/imunologia , Linfócitos T/parasitologia , Proteína Tumoral 1 Controlada por Tradução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA