Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 112(3): 772-785, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106415

RESUMO

Evolutionary change following gene duplication can lead to functionally divergent paralogous proteins. If comprising identical subunits their random assortment would also form potentially detrimental heteromeric proteins. In Arabidopsis, the ARF GTPase guanine-nucleotide exchange factor GNOM is essential for polar recycling of auxin-efflux transporter PIN1 from endosomes to the basal plasma membrane whereas its paralog GNL1 mediates retrograde Golgi-endoplasmic reticulum traffic. Here we show that both GNOM and GNL1 form homodimers but no heterodimers. To assess the biological significance of this, we generated transgenic plants expressing engineered heterodimer-compatible GNOM variants. Those plants showed developmental defects such as the failure to produce lateral roots. To identify mechanisms underlying heterodimer prevention, we analyzed interactions of the N-terminal dimerization and cyclophilin-binding (DCB) domain. Each DCB domain interacted with the complementary fragment (ΔDCB) both of their own and of the paralogous protein. However, only DCBGNOM interacted with itself whereas DCBGNL1 failed to interact with itself and with DCBGNOM . GNOM variants in which the DCB domain was removed or replaced by DCBGNL1 revealed a role for DCB-DCB interaction in the prevention of GNOM-GNL1 heterodimers whereas DCB-ΔDCB interaction was essential for dimer formation and GNOM function. Our data suggest a model of early DCB-DCB interaction that facilitates GNOM homodimer formation, indirectly precluding formation of detrimental heterodimers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dimerização , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Complexo de Golgi/metabolismo , Peptidilprolil Isomerase/metabolismo
2.
New Phytol ; 229(2): 979-993, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33070379

RESUMO

Cytokinin and auxin are key regulators of plant growth and development. During the last decade transport mechanisms have turned out to be the key for the control of local and long-distance hormone distributions. In contrast with auxin, cytokinin transport is poorly understood. Here, we show that Arabidopsis thaliana AZG2, a member of the AZG purine transporter family, acts as cytokinin transporter involved in root system architecture determination. Even though purines are substrates for both AZG1 and AZG2, we found distinct transport mechanisms. The expression of AZG2 is restricted to a small group of cells surrounding the lateral root (LR) primordia and induced by auxins. Compared to the wild-type (WT), mutants carrying loss-of-function alleles of AZG2 have higher LR density, suggesting that AZG2 is part of a regulatory pathway in LR emergence. Moreover, azg2 is partially insensitive to exogenous cytokinin, which is consistent with the observation that the cytokinin reporter TCSnpro :GFP showed lower fluorescence signal in the roots of azg2 compared to the WT. These results indicate a defective cytokinin signalling pathway in the region of LR primordia. The integration of AZG2 subcellular localization and cytokinin transport capacity data allowed us to propose a local cytokinin : auxin signalling model for the regulation of LR emergence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos
3.
Plant Cell ; 32(8): 2491-2507, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487565

RESUMO

Membrane trafficking maintains the organization of the eukaryotic cell and delivers cargo proteins to their subcellular destinations, such as sites of action or degradation. The formation of membrane vesicles requires the activation of the ADP-ribosylation factor ARF GTPase by the SEC7 domain of ARF guanine-nucleotide exchange factors (ARF-GEFs), resulting in the recruitment of coat proteins by GTP-bound ARFs. In vitro exchange assays were done with monomeric proteins, although ARF-GEFs form dimers in vivo. This feature is conserved across eukaryotes, although its biological significance is unknown. Here, we demonstrate the proximity of ARF1•GTPs in vivo by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy, mediated through coordinated activation by dimers of Arabidopsis (Arabidopsis thaliana) ARF-GEF GNOM, which is involved in polar recycling of the auxin transporter PIN-FORMED1. Mutational disruption of ARF1 spacing interfered with ARF1-dependent trafficking but not with coat protein recruitment. A mutation impairing the interaction of one of the two SEC7 domains of the GNOM ARF-GEF dimer with its ARF1 substrate reduced the efficiency of coordinated ARF1 activation. Our results suggest a model of coordinated activation-dependent membrane insertion of ARF1•GTP molecules required for coated membrane vesicle formation. Considering the evolutionary conservation of ARFs and ARF-GEFs, this initial regulatory step of membrane trafficking might well occur in eukaryotes in general.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Multimerização Proteica , Fatores de Transcrição/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica
4.
Curr Biol ; 24(12): 1383-1389, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24881875

RESUMO

Plasma-membrane proteins such as ligand-binding receptor kinases, ion channels, or nutrient transporters are turned over by targeting to a lytic compartment--lysosome or vacuole--for degradation. After their internalization, these proteins arrive at an early endosome, which then matures into a late endosome with intraluminal vesicles (multivesicular body, MVB) before fusing with the lysosome/vacuole in animals or yeast. The endosomal maturation step involves a SAND family protein mediating Rab5-to-Rab7 GTPase conversion. Vacuolar trafficking is much less well understood in plants. Here we analyze the role of the single-copy SAND gene of Arabidopsis. In contrast to its animal or yeast counterpart, Arabidopsis SAND protein is not required for early-to-late endosomal maturation, although its role in mediating Rab5-to-Rab7 conversion is conserved. Instead, Arabidopsis SAND protein is essential for the subsequent fusion of MVBs with the vacuole. The inability of sand mutant to mediate MVB-vacuole fusion is not caused by the continued Rab5 activity but rather reflects the failure to activate Rab7. In conclusion, regarding the endosomal passage of cargo proteins for degradation, a major difference between plants and nonplant organisms might result from the relative timing of endosomal maturation and SAND-dependent Rab GTPase conversion as a prerequisite for the fusion of late endosomes/MVBs with the lysosome/vacuole.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Vacúolos/metabolismo
5.
Elife ; 3: e02131, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24714496

RESUMO

Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1-BIG4 as regulators of post-Golgi trafficking, mediating late secretion from the trans-Golgi network but not recycling of endocytosed proteins to the plasma membrane, although the TGN also functions as an early endosome in plants. In contrast, BIG1-4 are absolutely required for trafficking of both endocytosed and newly synthesized proteins to the cell-division plane during cytokinesis, counteracting recycling to the plasma membrane. This change from recycling to secretory trafficking pathway mediated by ARF-GEFs confers specificity of cargo delivery to the division plane and might thus ensure that the partitioning membrane is completed on time in the absence of a cytokinesis-interphase checkpoint. DOI: http://dx.doi.org/10.7554/eLife.02131.001.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Divisão Celular , Endocitose , Complexo de Golgi/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA