Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322756

RESUMO

Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.

2.
Science ; 384(6697): 785-792, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753784

RESUMO

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Assuntos
Apoptose , Dano ao DNA , Biossíntese de Proteínas , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Códon/genética , Leucina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo
3.
FEBS Lett ; 598(12): 1453-1464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811347

RESUMO

Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.


Assuntos
Carboxipeptidases , Microtúbulos , Tubulina (Proteína) , Tirosina , Microtúbulos/metabolismo , Humanos , Animais , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/química , Tirosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/química , Processamento de Proteína Pós-Traducional
4.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683639

RESUMO

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.


Assuntos
Antígeno B7-H1 , Proteínas com Domínio MARVEL , Proteínas da Mielina , Neoplasias , Linfócitos T , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T/imunologia , Proteínas da Mielina/metabolismo , Proteínas com Domínio MARVEL/metabolismo
5.
Nature ; 621(7977): 171-178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648867

RESUMO

Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.


Assuntos
Aciltransferases , Triglicerídeos , Animais , Humanos , Camundongos , Aciltransferases/metabolismo , Coenzima A/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Escherichia coli/metabolismo , Homeostase , Triglicerídeos/biossíntese , Metabolismo Energético , Nutrientes/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo
6.
Mol Oncol ; 17(7): 1192-1211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195379

RESUMO

Faithful and timely repair of DNA double-strand breaks (DSBs) is fundamental for the maintenance of genomic integrity. Here, we demonstrate that the meiotic recombination co-factor MND1 facilitates the repair of DSBs in somatic cells. We show that MND1 localizes to DSBs, where it stimulates DNA repair through homologous recombination (HR). Importantly, MND1 is not involved in the response to replication-associated DSBs, implying that it is dispensable for HR-mediated repair of one-ended DSBs. Instead, we find that MND1 specifically plays a role in the response to two-ended DSBs that are induced by irradiation (IR) or various chemotherapeutic drugs. Surprisingly, we find that MND1 is specifically active in G2 phase, whereas it only marginally affects repair during S phase. MND1 localization to DSBs is dependent on resection of the DNA ends and seemingly occurs through direct binding of MND1 to RAD51-coated ssDNA. Importantly, the lack of MND1-driven HR repair directly potentiates the toxicity of IR-induced damage, which could open new possibilities for therapeutic intervention, specifically in HR-proficient tumors.


Assuntos
Reparo do DNA , Recombinação Homóloga , Humanos , Reparo do DNA/genética , Recombinação Homóloga/genética , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Fase S , Proteínas de Ciclo Celular/metabolismo
7.
Sci Adv ; 9(22): eadf4409, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256941

RESUMO

DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Camundongos , Replicação do DNA , Recombinação Homóloga , DNA
8.
J Vis Exp ; (193)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939268

RESUMO

Microtubules are an important part of the cytoskeleton and are involved in intracellular organization, cell division, and migration. Depending on the posttranslational modifications, microtubules can form complexes with various interacting proteins. These microtubule-protein complexes are often implicated in human diseases. Understanding the structure of such complexes is useful for elucidating their mechanisms of action and can be studied by cryo-electron microscopy (cryo-EM). To obtain such complexes for structural studies, it is important to extract microtubules containing or lacking specific posttranslational modifications. Here, we describe a simplified protocol to extract endogenous tubulin from genetically modified mammalian cells, involving microtubule polymerization, followed by sedimentation using ultracentrifugation. The extracted tubulin can then be used to prepare cryo-electron microscope grids with microtubules that are bound to a purified microtubule-binding protein of interest. As an example, we demonstrate the extraction of fully tyrosinated microtubules from cell lines engineered to lack the three known tubulin-detyrosinating enzymes. These microtubules are then used to make a protein complex with enzymatically inactive microtubule-associated tubulin detyrosinase on cryo-EM grids.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Humanos , Tubulina (Proteína)/metabolismo , Microscopia Crioeletrônica/métodos , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Ligação Proteica , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
9.
Science ; 377(6614): 1533-1537, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173861

RESUMO

Protein synthesis generally starts with a methionine that is removed during translation. However, cytoplasmic actin defies this rule because its synthesis involves noncanonical excision of the acetylated methionine by an unidentified enzyme after translation. Here, we identified C19orf54, named ACTMAP (actin maturation protease), as this enzyme. Its ablation resulted in viable mice in which the cytoskeleton was composed of immature actin molecules across all tissues. However, in skeletal muscle, the lengths of sarcomeric actin filaments were shorter, muscle function was decreased, and centralized nuclei, a common hallmark of myopathies, progressively accumulated. Thus, ACTMAP encodes the missing factor required for the synthesis of mature actin and regulates specific actin-dependent traits in vivo.


Assuntos
Actinas , Metionina , Peptídeo Hidrolases , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/biossíntese , Actinas/genética , Animais , Endopeptidases , Metionina/genética , Metionina/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
10.
Nat Struct Mol Biol ; 29(6): 586-591, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35710836

RESUMO

Cohesin structures the genome through the formation of chromatin loops and by holding together the sister chromatids. The acetylation of cohesin's SMC3 subunit is a dynamic process that involves the acetyltransferase ESCO1 and deacetylase HDAC8. Here we show that this cohesin acetylation cycle controls the three-dimensional genome in human cells. ESCO1 restricts the length of chromatin loops, and of architectural stripes emanating from CTCF sites. HDAC8 conversely promotes the extension of such loops and stripes. This role in controlling loop length turns out to be distinct from the canonical role of cohesin acetylation that protects against WAPL-mediated DNA release. We reveal that acetylation controls the interaction of cohesin with PDS5A to restrict chromatin loop length. Our data support a model in which this PDS5A-bound state acts as a brake that enables the pausing and restart of loop enlargement. The cohesin acetylation cycle hereby provides punctuation in the process of genome folding.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Acetilação , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Histona Desacetilases/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Coesinas
11.
Science ; 376(6595): eabn6020, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35482892

RESUMO

The detyrosination-tyrosination cycle involves the removal and religation of the C-terminal tyrosine of α-tubulin and is implicated in cognitive, cardiac, and mitotic defects. The vasohibin-small vasohibin-binding protein (SVBP) complex underlies much, but not all, detyrosination. We used haploid genetic screens to identify an unannotated protein, microtubule associated tyrosine carboxypeptidase (MATCAP), as a remaining detyrosinating enzyme. X-ray crystallography and cryo-electron microscopy structures established MATCAP's cleaving mechanism, substrate specificity, and microtubule recognition. Paradoxically, whereas abrogation of tyrosine religation is lethal in mice, codeletion of MATCAP and SVBP is not. Although viable, defective detyrosination caused microcephaly, associated with proliferative defects during neurogenesis, and abnormal behavior. Thus, MATCAP is a missing component of the detyrosination-tyrosination cycle, revealing the importance of this modification in brain formation.


Assuntos
Carboxipeptidases , Proteínas Associadas aos Microtúbulos , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Tirosina , Animais , Carboxipeptidases/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Tubulina (Proteína)/química , Tirosina/química
12.
Nat Commun ; 13(1): 754, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136067

RESUMO

The genome consists of regions of transcriptionally active euchromatin and more silent heterochromatin. We reveal that the formation of heterochromatin domains requires cohesin turnover on DNA. Stabilization of cohesin on DNA through depletion of its release factor WAPL leads to a near-complete loss of heterochromatin domains. We observe the opposite phenotype in cells deficient for subunits of the Mediator-CDK module, with an almost binary partition of the genome into dense H3K9me3 domains, and regions devoid of H3K9me3 spanning the rest of the genome. We suggest that the Mediator-CDK module might contribute to gene expression by limiting the formation of dense heterochromatin domains. WAPL deficiency prevents the formation of heterochromatin domains, and allows for gene expression even in the absence of the Mediator-CDK subunit MED12. We propose that cohesin and Mediator affect heterochromatin in different ways to enable the correct distribution of epigenetic marks, and thus to ensure proper gene expression.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Epigênese Genética , Técnicas de Inativação de Genes , Humanos , Complexo Mediador/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , RNA-Seq , Coesinas
14.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443154

RESUMO

The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/genética , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Infecções por Adenoviridae/genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Poro Nuclear/metabolismo , Ligação Proteica , Proteômica , Ribonucleoproteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Vírion/metabolismo , Replicação Viral/fisiologia
15.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271119

RESUMO

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão Tumoral
16.
Sci Signal ; 13(649)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934076

RESUMO

Forward genetic screens in mammalian cell lines, such as RNAi and CRISPR-Cas9 screens, have made major contributions to the elucidation of diverse signaling pathways. Here, we exploited human haploid cells as a robust comparative screening platform and report a set of quantitative forward genetic screens for identifying regulatory mechanisms of mTORC1 signaling, a key growth control pathway that senses diverse metabolic states. Selected chemical and genetic perturbations in this screening platform, including rapamycin treatment and genetic ablation of the Ragulator subunit LAMTOR4, revealed the known core mTORC1 regulatory signaling complexes and the intimate interplay of the mTORC1 pathway with lysosomal function, validating the approach. In addition, we identified a differential requirement for LAMTOR4 and LAMTOR5 in regulating the mTORC1 pathway under fed and starved conditions. Furthermore, we uncovered a previously unknown "synthetic-sick" interaction between the tumor suppressor folliculin and LAMTOR4, which may have therapeutic implications in cancer treatment. Together, our study demonstrates the use of iterative "perturb and observe" genetic screens to uncover regulatory mechanisms driving complex mammalian signaling networks.


Assuntos
Retroalimentação Fisiológica , Testes Genéticos/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Haploidia , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
17.
Sci Transl Med ; 12(544)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434850

RESUMO

Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, are the most widely prescribed medications for diseases involving bone, with nearly 200 million prescriptions written annually. Recently, widespread use of N-BPs has been challenged due to the risk of rare but traumatic side effects such as atypical femoral fracture (AFF) and osteonecrosis of the jaw (ONJ). N-BPs bind to and inhibit farnesyl diphosphate synthase, resulting in defects in protein prenylation. Yet, it remains poorly understood what other cellular factors might allow N-BPs to exert their pharmacological effects. Here, we performed genome-wide studies in cells and patients to identify the poorly characterized gene, ATRAID Loss of ATRAID function results in selective resistance to N-BP-mediated loss of cell viability and the prevention of alendronate-mediated inhibition of prenylation. ATRAID is required for alendronate inhibition of osteoclast function, and ATRAID-deficient mice have impaired therapeutic responses to alendronate in both postmenopausal and senile (old age) osteoporosis models. Last, we performed exome sequencing on patients taking N-BPs that suffered ONJ or an AFF. ATRAID is one of three genes that contain rare nonsynonymous coding variants in patients with ONJ or an AFF that is also differentially expressed in poor outcome groups of patients treated with N-BPs. We functionally validated this patient variation in ATRAID as conferring cellular hypersensitivity to N-BPs. Our work adds key insight into the mechanistic action of N-BPs and the processes that might underlie differential responsiveness to N-BPs in people.


Assuntos
Difosfonatos , Nitrogênio , Alendronato/farmacologia , Animais , Osso e Ossos , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Humanos , Camundongos , Osteoclastos
18.
Nat Struct Mol Biol ; 26(7): 567-570, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270470

RESUMO

The cyclic enzymatic removal and ligation of the C-terminal tyrosine of α-tubulin generates heterogeneous microtubules and affects their functions. Here we describe the crystal and solution structure of the tubulin carboxypeptidase complex between vasohibin (VASH1) and small vasohibin-binding protein (SVBP), which folds in a long helix, which stabilizes the VASH1 catalytic domain. This structure, combined with molecular docking and mutagenesis experiments, reveals which residues are responsible for recognition and cleavage of the tubulin C-terminal tyrosine.


Assuntos
Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Domínios Proteicos , Tubulina (Proteína)/metabolismo
19.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996093

RESUMO

Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.


Assuntos
Haploidia , Heparitina Sulfato/genética , Heparitina Sulfato/isolamento & purificação , Pinocitose/fisiologia , Vaccinia virus/genética , Vaccinia virus/metabolismo , Vacínia/virologia , Proteínas de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Vírus da Varíola Bovina/genética , Vírus de DNA , Técnicas de Inativação de Genes , Testes Genéticos , Complexo de Golgi , Células HEK293 , Células HeLa , Heparitina Sulfato/metabolismo , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana , Monkeypox virus/genética , N-Acetilglucosaminiltransferases , Fosfatidilserinas/metabolismo , Poxviridae/genética , Ligação Viral
20.
Nat Med ; 25(4): 612-619, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833751

RESUMO

Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Receptores Imunológicos/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Camundongos Transgênicos , Neoplasias/patologia , Proteínas Opsonizantes/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA