Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539958

RESUMO

Insectivorous bats play a crucial role in agroecosystems by providing invaluable pest control services. With the escalating impacts of climate change, a comprehensive understanding of the environmental factors influencing bat activity becomes imperative for their conservation in agricultural landscapes. This study investigates the influence of weather conditions, specifically air temperature and relative humidity, on the timing activity and the relative abundance of five insectivorous bat species in central Chile. Data from automatic bat detectors and climatological stations are utilized for analysis. Our results unveil species-specific behaviors, with Tadarida brasiliensis exhibiting early emergence and extended activity periods compared to other bat species. Histiotus montanus and Lasiurus villosissimus display delayed onsets on more humid evenings, whereas Lasiurus varius and T. brasiliensis initiate activity earlier on colder nights compared to warmer ones. Relative humidity emerges as a key factor influencing relative abundance for all species, with more minutes with bat passes detected on drier nights. These findings suggest that global warming may influence observed bat behaviors, potentially altering foraging patterns and activity levels of these bat species. Moreover, as climate change continues, understanding the long-term impact on bat populations and their adaptive strategies is crucial for effective conservation measures. Further studies exploring these dynamics can provide valuable insights for shaping conservation efforts in the face of evolving environmental challenges.

2.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176420

RESUMO

This work aimed to synthesize and characterize a nanocarrier that consisted of a ternary system, namely ß-cyclodextrin-based nanosponge (NS) inclusion compounds (ICs) associated with silver nanoparticles (AgNPs) to increase the antimicrobial activity of quercetin (QRC). The nanosystem was developed to overcome the therapeutical limitations of QRC. The host-guest interaction between NSs and QRC was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), and proton nuclear magnetic resonance (1H-NMR). Moreover, the association of AgNPs with the NS-QRC was characterized using FE-SEM, energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ-potential, and UV-Vis. Finally, the antimicrobial activity of the novel formulations was tested, which depicted that the complexation of QRC inside the supramolecular interstices of NSs increases the inhibitory effects against Escherichia coli ATCC25922, as compared to that observed in the free QRC. In addition, at the same concentrations used to generate an antibacterial effect, the NS-QRC system with AgNPs does not affect the metabolic activity of GES-1 cells. Therefore, these results suggest that the use of NSs associated with AgNPs resulted in an efficient strategy to improve the physicochemical features of QRC.

3.
Plants (Basel) ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501269

RESUMO

Algae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as ß-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the ß-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high-density fed-batch culture improves the biomass growth. It was possible to obtain a biomass productivity equal to 8.00 × 10-2 ± 2.00 × 10-3 g/(L × day), while the batch condition reached 5.13 × 10-2 ± 4.00 × 10-4 g/(L × day). The same phenomenon was observed when analyzing the ß-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10-3 ± 2.00 × 10-4 g of product/(L × day) against the 4.10 × 10-3 ± 2.00 × 10-4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase ß-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry.

4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830025

RESUMO

Due to the inability to curb the excessive increase in the prevalence of obesity and overweight, it is necessary to comprehend in more detail the factors involved in the pathophysiology and to appreciate more clearly the biochemical and molecular mechanisms of obesity. Thus, understanding the biological regulation of adipose tissue is of fundamental relevance. Connexin, a protein that forms intercellular membrane channels of gap junctions and unopposed hemichannels, plays a key role in adipogenesis and in the maintenance of adipose tissue homeostasis. The expression and function of Connexin 43 (Cx43) during the different stages of the adipogenesis are differentially regulated. Moreover, it has been shown that cell-cell communication decreases dramatically upon differentiation into adipocytes. Furthermore, inhibition of Cx43 degradation or constitutive overexpression of Cx43 blocks adipocyte differentiation. In the first events of adipogenesis, the connexin is highly phosphorylated, which is likely associated with enhanced Gap Junction (GJ) communication. In an intermediate state of adipocyte differentiation, Cx43 phosphorylation decreases, as it is displaced from the membrane and degraded through the proteasome; thus, Cx43 total protein is reduced. Cx is involved in cardiac disease as well as in obesity-related cardiovascular diseases. Different studies suggest that obesity together with a high-fat diet are related to the production of remodeling factors associated with expression and distribution of Cx43 in the atrium.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Comunicação Celular , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Obesidade/metabolismo , Animais , Humanos
5.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281254

RESUMO

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Assuntos
Antibacterianos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Linhagem Celular , Desenvolvimento de Medicamentos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanotecnologia , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/administração & dosagem , Prata/química , Staphylococcus aureus/efeitos dos fármacos
6.
Nanomaterials (Basel) ; 10(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053989

RESUMO

A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop assays similar to the enzyme-linked immunosorbent (ELISA) assay to determine and quantify florfenicol (FF) in real food samples such as liquid milk and salmon muscle is presented here. The nanoMIPs were synthesized by a solid-phase approach with an immobilized FF (template) and characterized using dynamic light scattering, a SPR-2 biosensor system and transmission electron microscopy. Immobilization of nanoMIPs was conducted by preparing a homogenous solution of FF-nanoMIPs in water mixed with polyvinyl alcohol (PVA) 0.2% (w/v) in each well of a microplate. The detection of florfenicol was achieved in competitive binding experiments with a horseradish peroxidase-florfenicol (FF-HRP) conjugate. The assay made it possible to measure FF in buffer and in real samples (liquid milk and salmon muscle) within the range of 60-80 and 90-100 ng/mL, respectively. The immobilized nanoMIPs were stored for six weeks at room temperature and at 5 °C. The results indicate good signal recovery for all FF concentrations in spiked milk samples, without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA.

7.
Carbohydr Polym ; 233: 115865, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059912

RESUMO

In this work, we present a solid silicon substrate functionalized with modified ß-cyclodextrin monolayers as an optimal surface for organic contaminant uptake. The inclusion and capture of three potential pollutants, 4-chlorophenoxyacetic acid, 4-aminobenzoic acid and phenylethylamine, were studied. 1H-NMR and ROESY studies revealed the complete inclusion and details of the conformational orientation of the three guests in the per-(6-amino-6-deoxy)-ß-cyclodextrin matrix, forming three new inclusion complexes that have not yet been reported. Capture assays for the guests were carried out by immersing the substrates in an aqueous pollutant solution and by measuring the UV-vis spectra. This substrate showed a high sorption capacity at equilibrium, between 2.5 × 10-5 and 6.0 × 10-5 mmol/substrate, for the studied pollutants. In addition, this surface can be reused four times with an efficiency equal to the initial use. Therefore, it could be a versatile platform that could be applied for the capture of other organic pollutants from water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA