Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(5): e14134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488216

RESUMO

The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.


Assuntos
Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Animais , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Cross-Talk/fisiologia , Receptores de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Pressão Sanguínea/fisiologia , Receptor Tipo 2 de Angiotensina/metabolismo
2.
ACS Omega ; 8(29): 26479-26496, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521653

RESUMO

A library of structurally related coumarins was generated through synthesis reactions and chemical modification reactions to obtain derivatives with antiproliferative activity both in vivo and in vitro. Out of a total of 35 structurally related coumarin derivatives, seven of them showed inhibitory activity in in vitro tests against Taq DNA polymerase with IC50 values lower than 250 µM. The derivatives 4-(chloromethyl)-5,7-dihydroxy-2H-chromen-2-one (2d) and 4-((acetylthio)methyl)-2-oxo-2H-chromen-7-yl acetate (3c) showed the most promising anti-polymerase activity with IC50 values of 20.7 ± 2.10 and 48.25 ± 1.20 µM, respectively. Assays with tumor cell lines (HEK 293 and HCT-116) were carried out, and the derivative 4-(chloromethyl)-7,8-dihydroxy-2H-chromen-2-one (2c) was the most promising, with an IC50 value of 8.47 µM and a selectivity index of 1.87. In addition, the derivatives were evaluated against Saccharomyces cerevisiae strains that report about common modes of actions, including DNA damage, that are expected for agents that cause replicative stress. The coumarin derivatives 7-(2-(oxiran-2-yl)ethoxy)-2H-chromen-2-one (5b) and 7-(3-(oxiran-2-yl)propoxy)-2H-chromen-2-one (5c) caused DNA damage in S. cerevisiae. The O-alkenylepoxy group stands out as that with the most important functionality within this family of 35 derivatives, presenting a very good profile as an antiproliferative scaffold. Finally, the in vitro antiretroviral capacity was tested through RT-PCR assays. Derivative 5c showed inhibitory activity below 150 µM with an IC50 value of 134.22 ± 2.37 µM, highlighting the O-butylepoxy group as the functionalization responsible for the activity.

3.
Nat Prod Res ; 35(22): 4703-4708, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31920108

RESUMO

A phytochemical study was performed on three native plant species from the central-western zone of Argentina: Buddleja cordobensis Grisebach, Baccharis salicina Torr. & A. Gray and Nepeta cataria L. We could obtain verbascoside (1) from B. cordobensis. From N. cataria, we could obtain 1, 5, 9-epi-deoxyloganic acid (2) L. Finally, we could isolate 2-ß-(L-rhamnopyranosyl)-3-angeloyloxy-15-acetyloxy-7,13(14)-E-dien-ent-labdane (3) and 2-ß-(L-rhamnopyranosyl)-3-α-angeloyloxy-15-hydroxy-7,13(14)-E-dien-ent-labdane (4) from B. salicina. Moreover, three derivatives from 1, and one semi-synthetic derivative from 2, were prepared. PCR reaction was used to analyse the activity against DNA polymerase and cell culture to determine cytotoxicity and antitumoral activity. Verbascoside (1) was strongly active in the nanomolar scale (IC50 = 356 nM) against DNA polymerization. Moreover, verbascoside was also strongly active in the nanomolar scale against human melanoma cell line (IC50 = 256 nM) and human colorectal cell line (IC50 = 320 nM). Furthermore, derivatives 6 and 7 were cytotoxic against both cancer cell lines.


Assuntos
Buddleja , Glicosídeos , Glucosídeos/farmacologia , Glicosídeos/farmacologia , Humanos , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA