Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Arch Toxicol ; 97(8): 2273-2281, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349528

RESUMO

DNA repair plays an essential role in maintaining genomic stability, and can be assessed by various comet assay-based approaches, including the cellular repair assay and the in vitro repair assay. In the cellular repair assay, cells are challenged with a DNA-damaging compound and DNA damage removal over time is assessed. In the in vitro repair assay, an early step in the repair process is assessed as the ability of a cellular extract to recognize and incise damaged DNA in substrate nucleoids from cells treated with a DNA-damaging compound. Our direct comparison of both assays in eight cell lines and human peripheral blood lymphocytes indicated no significant relationship between these DNA repair assays (R2 = 0.084, P = 0.52). The DNA incision activity of test cells measured with the in vitro repair assay correlated with the background level of DNA damage in the untreated test cells (R2 = 0.621, P = 0.012). When extracts were prepared from cells exposed to DNA-damaging agents (10 mM KBrO3 or 1 µM Ro 19-8022 plus light), the incision activity was significantly increased, which is in line with the notion that base excision repair is inducible. The data presented suggest that the two assays do not measure the same endpoint of DNA repair and should be considered as complementary.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Ensaio Cometa , Linhagem Celular , DNA
2.
Cell Biol Toxicol ; 39(6): 2775-2786, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36932276

RESUMO

DNA repair is an essential agent in cancer development, progression, prognosis, and response to therapy. We have adapted a cellular repair assay based on the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay to assess DNA repair kinetics. The removal of oxidized nucleobases over time (0-480 min) was analyzed in peripheral blood mononuclear cells (PBMCs) and 8 cell lines. DNA damage was induced by exposure to either Ro19-8022 plus visible light or potassium bromate (KBrO3). The initial amount of damage induced by Ro 19-8022 plus light varied between cell lines, and this was apparently associated with the rate of repair. However, the amount of DNA damage induced by KBrO3 varied less between cell types, so we used this agent to study the kinetics of DNA repair. We found an early phase of ca. 60 min with fast removal of Fpg-sensitive sites, followed by slower removal over the following 7 h. In conclusion, adjusting the initial damage at T0 to an equal level can be achieved by the use of KBrO3, which allows for accurate analysis of subsequent cellular DNA repair kinetics in the first hour after exposure.


Assuntos
Reparo do DNA , Leucócitos Mononucleares , DNA-Formamidopirimidina Glicosilase/metabolismo , Ensaio Cometa , Dano ao DNA
3.
Artigo em Inglês | MEDLINE | ID: mdl-36669811

RESUMO

Several trials have attempted to identify sources of inter-laboratory variability in comet assay results, aiming at achieving more equal responses. Ionising radiation induces a defined level of DNA single-strand breaks (per dose/base pairs) and is used as a reference when comparing comet results but relies on accurately determined radiation doses. In this ring test we studied the significance of dose calibrations and comet assay protocol differences, with the object of identifying causes of variability and how to deal with them. Eight participating laboratories, using either x-ray or gamma radiation units, measured dose rates using alanine pellet dosimeters that were subsequently sent to a specialised laboratory for analysis. We found substantial deviations between calibrated and nominal (uncalibrated) dose rates, with up to 46% difference comparing highest and lowest values. Three additional dosimetry systems were employed in some laboratories: thermoluminescence detectors and two aqueous chemical dosimeters. Fricke's and Benzoic Acid dosimetry solutions gave reliable quantitative dose estimations using local equipment. Mononuclear cells from fresh human blood or mammalian cell lines were irradiated locally with calibrated (alanine) radiation doses and analysed for DNA damage using a standardised comet assay protocol and a lab-specific protocol. The dose response of eight laboratories, calculated against calibrated radiation doses, was linear with slope variance CV= 29% with the lab-specific protocol, reduced to CV= 16% with the standard protocol. Variation between laboratories indicate post-irradiation repair differences. Intra-laboratory variation was very low judging from the dose response of 8 donors (CV=4%). Electrophoresis conditions were different in the lab-specific protocols explaining some dose response variations which were reduced by systematic corrections for electrophoresis conditions. The study shows that comet assay data obtained in different laboratories can be compared quantitatively using calibrated radiation doses and that systematic corrections for electrophoresis conditions are useful.


Assuntos
Dano ao DNA , Radiação Ionizante , Animais , Humanos , Ensaio Cometa/métodos , Calibragem , Raios gama , Relação Dose-Resposta à Radiação , Mamíferos
4.
Environ Mol Mutagen ; 64(2): 88-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629742

RESUMO

The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.


Assuntos
Espermatozoides , Testículo , Masculino , Animais , Ensaio Cometa , Dano ao DNA , Células Germinativas , DNA
5.
Nat Protoc ; 18(3): 929-989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707722

RESUMO

The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Humanos , Ensaio Cometa/métodos , Células Eucarióticas , DNA/genética
6.
Mutat Res Rev Mutat Res ; 788: 108398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34893163

RESUMO

DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Espermatozoides/metabolismo , Animais , Humanos , Masculino , Espermatozoides/patologia
8.
Sci Rep ; 11(1): 16793, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408182

RESUMO

The comet assay or single cell gel electrophoresis, is the most common method used to measure strand breaks and a variety of other DNA lesions in human populations. To estimate the risk of overall mortality, mortality by cause, and cancer incidence associated to DNA damage, a cohort of 2,403 healthy individuals (25,978 person-years) screened in 16 laboratories using the comet assay between 1996 and 2016 was followed-up. Kaplan-Meier analysis indicated a worse overall survival in the medium and high tertile of DNA damage (p < 0.001). The effect of DNA damage on survival was modelled according to Cox proportional hazard regression model. The adjusted hazard ratio (HR) was 1.42 (1.06-1.90) for overall mortality, and 1.94 (1.04-3.59) for diseases of the circulatory system in subjects with the highest tertile of DNA damage. The findings of this study provide epidemiological evidence encouraging the implementation of the comet assay in preventive strategies for non-communicable diseases.


Assuntos
Ácidos Nucleicos Livres/genética , Dano ao DNA/genética , Neoplasias/genética , Ensaio Cometa , Humanos , Estimativa de Kaplan-Meier , Leucócitos/patologia , Neoplasias/mortalidade , Modelos de Riscos Proporcionais
9.
Mutat Res Rev Mutat Res ; 787: 108371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34083035

RESUMO

The alkaline comet assay, or single cell gel electrophoresis, is one of the most popular methods for assessing DNA damage in human population. One of the open issues concerning this assay is the identification of those factors that can explain the large inter-individual and inter-laboratory variation. International collaborative initiatives such as the hCOMET project - a COST Action launched in 2016 - represent a valuable tool to meet this challenge. The aims of hCOMET were to establish reference values for the level of DNA damage in humans, to investigate the effect of host factors, lifestyle and exposure to genotoxic agents, and to compare different sources of assay variability. A database of 19,320 subjects was generated, pooling data from 105 studies run by 44 laboratories in 26 countries between 1999 and 2019. A mixed random effect log-linear model, in parallel with a classic meta-analysis, was applied to take into account the extensive heterogeneity of data, due to descriptor, specimen and protocol variability. As a result of this analysis interquartile intervals of DNA strand breaks (which includes alkali-labile sites) were reported for tail intensity, tail length, and tail moment (comet assay descriptors). A small variation by age was reported in some datasets, suggesting higher DNA damage in oldest age-classes, while no effect could be shown for sex or smoking habit, although the lack of data on heavy smokers has still to be considered. Finally, highly significant differences in DNA damage were found for most exposures investigated in specific studies. In conclusion, these data, which confirm that DNA damage measured by the comet assay is an excellent biomarker of exposure in several conditions, may contribute to improving the quality of study design and to the standardization of results of the comet assay in human populations.


Assuntos
Ensaio Cometa/métodos , Biomarcadores/sangue , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos
10.
Nat Protoc ; 15(12): 3817-3826, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106678

RESUMO

The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between 'desirable' and 'essential' information: 'essential' information refers to the precise details that are necessary to assess the quality of the experimental work, whereas 'desirable' information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.


Assuntos
Ensaio Cometa/métodos , Projetos de Pesquisa , Ensaio Cometa/normas , Consenso , Fidelidade a Diretrizes/estatística & dados numéricos , Humanos , Laboratórios
14.
Artigo em Inglês | MEDLINE | ID: mdl-31421734

RESUMO

The comet assay (single cell gel electrophoresis) is widely used as a biomonitoring tool to assess DNA damage - strand breaks, as well as oxidised bases; it can also be adapted to measure DNA repair. It is based on the ability of breaks in the DNA to relax supercoiling, allowing DNA loops to extend from the nuclear core (nucleoid) under an electric field to form a comet-like tail. Most commonly, it is applied to white blood cells. The range of detection is between a few hundred breaks per cell and a few thousand, encompassing levels of damage that can be repaired and tolerated by human cells. Its applications include monitoring various diseases, studying the influence of nutrition on DNA stability, and investigating effects of environmental and occupational mutagens. Here we address the issue of inter-laboratory variation in comet assay results. This variation is largely due to differences in methods. Imposing a standard protocol is not practical, but users should be aware of the crucial parameters that affect performance of the assay. These include the concentration of agarose in which the cells are embedded; the duration of cell lysis, and of enzyme incubation when oxidised bases are being measured; the duration of alkaline unwinding; the duration of electrophoresis and the voltage gradient applied; and the method used to score the comets. Including reference standards in each experiment allows experimental variability to be monitored - and if variation is not extreme, results can be normalised using reference standard values. Reference standards are also essential for inter-laboratory comparison. Finally, we offer recommendations which, we believe, will limit variability and increase the usefulness of this assay in molecular epidemiology.


Assuntos
Monitoramento Biológico/métodos , Ensaio Cometa/métodos , Dano ao DNA , DNA/sangue , DNA/efeitos dos fármacos , Quebras de DNA , DNA-Formamidopirimidina Glicosilase/farmacologia , Eletroforese em Gel de Ágar/métodos , Guanina/análogos & derivados , Guanina/sangue , Guias como Assunto , Humanos , Concentração de Íons de Hidrogênio , Ensaio de Proficiência Laboratorial , Oxirredução , Padrões de Referência , Reprodutibilidade dos Testes , Sefarose , Coloração e Rotulagem/métodos , Temperatura , Fatores de Tempo
15.
Mutat Res Rev Mutat Res ; 781: 130-164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416573

RESUMO

The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.


Assuntos
Ensaio Cometa/métodos , Animais , Dano ao DNA/efeitos dos fármacos , Monitoramento Ambiental/métodos , Humanos , Modelos Animais , Vertebrados , Baleias
16.
Mutat Res Rev Mutat Res ; 779: 82-113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31097154

RESUMO

The comet assay, also called single cell gel electrophoresis, is a sensitive, rapid and low-cost technique for quantifying and analysing DNA damage and repair at the level of individual cells. The assay itself can be applied on virtually any cell type derived from different organs and tissues of eukaryotic organisms. Although it is mainly used on human cells, the assay has applications also in the evaluation of DNA damage in yeast, plant and animal cells. Therefore, the purpose of this review is to give an extensive overview on the usage of the comet assay in animal models from invertebrates to vertebrates, covering both terrestrial and water biota. The comet assay is used in a variety of invertebrate species since they are regarded as interesting subjects in ecotoxicological research due to their significance in ecosystems. Hence, the first part of the review (Part 1) will discuss the application of the comet assay in invertebrates covering protozoans, platyhelminthes, planarians, cnidarians, molluscs, annelids, arthropods and echinoderms. Besides a large number of animal species, the assay is also performed on a variety of cells, which includes haemolymph, gills, digestive gland, sperm and embryo cells. The mentioned cells have been used for the evaluation of a broad spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of invertebrate models and their role from an ecotoxicological point of view will also be discussed as well as the comparison of the use of the comet assay in invertebrate and human models. Since the comet assay is still developing, its increasing potential in assessing DNA damage in animal models is crucial especially in the field of ecotoxicology and biomonitoring at the level of different species, not only humans.


Assuntos
Invertebrados/genética , Baleias/genética , Animais , Ensaio Cometa/métodos , Dano ao DNA/genética , Humanos , Modelos Animais
17.
Environ Toxicol Pharmacol ; 67: 8-20, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685595

RESUMO

Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.


Assuntos
Poluentes Atmosféricos/toxicidade , Biocombustíveis , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Ratos Endogâmicos F344
18.
Environ Mol Mutagen ; 59(7): 595-602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091211

RESUMO

Even if the comet assay has been widely used for decades, there is still a need for controlled studies and good mathematical models to assess the variability of the different versions of this assay and in particular to assess potential intra-experimental variability of the high-throughput comet assay. To address this point, we further validate a high-throughput comet assay that uses hydrophilic polyester film (Gelbond®). Experiments were performed using human peripheral blood mononuclear cells (PBMC) either untreated or treated with different concentration of MMS (methyl methanesulfonate). A positive control for the Fpg (Formamidopyrimidine DNA glycosylase)-modified comet assay (Ro 19-8022 with light) was also included. To quantify the sources of variability of the assay, including intradeposit variability, instead of summarizing DNA damage on 50 cells from a deposit by the mean or median of their percentage DNA tail, we analyzed all logit-transformed data with a linear mixed model. The main source of variation in our experimental data is between cells within the same deposit, suggesting genuine variability in the response of the cells rather than variation caused by technical treatment of cell samples. The second source of variation is the inter-experimental variation (day-to-day experiment); the coefficient of this variation for the control was 13.6%. The variation between deposits in the same experiment is negligible. Moreover, there is no systematic bias because of the position of samples on the Gelbond® film nor the position of the films in the electrophoresis tank. This high-throughput comet assay is thus reliable for various applications. Environ. Mol. Mutagen. 59:595-602, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Ensaio Cometa/métodos , Ensaios de Triagem em Larga Escala/métodos , Mutagênicos/toxicidade , Poliésteres/química , Dano ao DNA/efeitos dos fármacos , DNA-Formamidopirimidina Glicosilase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/metabolismo , Modelos Lineares , Metanossulfonato de Metila/toxicidade
19.
Mutagenesis ; 33(1): 25-30, 2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29329446

RESUMO

The alkaline comet assay, in vivo and in vitro, is currently used in several areas of research and in regulatory genotoxicity testing. Several efforts have been made in order to decrease the inter-experimental and inter-laboratory variability and increase the reliability of the assay. In this regard, lysis conditions are considered as one of the critical variables and need to be further studied. Here, we tested different times of lysis (from no lysis to 1 week) and two different lysis solutions in human lymphoblast (TK6) cells unexposed or exposed to X-rays. Similar % tail DNA values were obtained independently of the time of lysis employed for every X-ray dose tested and both lysis solutions. These results, taken together with our previous ones with methyl methanesulfonate and H2O2, which showed clear lysis-time dependence, support that the influence of the lysis time in the comet assay results depends on the type of lesion being detected; some DNA lesions may spontaneously give rise to apurinic or apyrimidinic (AP) sites during the lysis period, which can be converted into strand breaks detectable with the comet assay. Testing different times of lysis would be useful to increase the sensitivity of the comet assay and to ensure the detection of DNA lesions of an unknown compound, thereby providing some insight into the chemical nature of the lesions induced. However, the same lysis conditions (i.e. lysis time and lysis solution) should be used when comparing results between different experiments or laboratories.


Assuntos
Ensaio Cometa/métodos , Ensaio Cometa/normas , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Padrões de Referência , Reprodutibilidade dos Testes , Soluções , Fatores de Tempo , Raios X/efeitos adversos
20.
Mutagenesis ; 33(1): 31-39, 2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29240951

RESUMO

The alkaline comet assay and a cell-free system were used to characterise DNA lesions induced by treatment with glycidamide (GA), a metabolite of the food contaminant acrylamide. DNA lesions induced by GA were sensitively detected when the formamidopyrimidine-DNA-glycosylase (Fpg) enzyme was included in the comet assay. We used LC-MS to characterise modified bases from GA-treated naked DNA with and without subsequent Fpg treatment. N7-GA-Guanine and N3-GA-Adenine aglycons were detected in the supernatant showing some depurination of adducted bases; treatment of naked DNA with Fpg revealed no further increase in the adduct yield nor occurrence of other adducted nucleobases. We treated human lymphocytes with GA and found large differences in DNA lesion levels detected with Fpg, depending on the duration and the pH of the lysis step. These lysis-dependent variations in GA-induced Fpg sensitive sites paralleled those observed after treatment of cells with methyl methane sulfonate (MMS). On the other hand, oxidative lesions (8-oxoGuanine) induced by a photoactive compound (Ro 12-9786) plus light, and also DNA strand breaks induced by X-rays, were detected largely independently of the lysis conditions. The results suggest that the GA-induced lesions are predominantly N7-GA-dG adducts slowly undergoing imidazole ring opening at pH 10 as in the standard lysis procedure; such structures are substrate for Fpg leading to strand breaks. The data suggest that the characteristic alkaline lysis dependence of some DNA lesions may be used to study specific types of DNA modifications. The comet assay is increasingly used in regulatory testing of chemicals; in this context, lysis-dependent variations represent a novel approach to obtain insight in the molecular nature of a genotoxic insult.


Assuntos
Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Compostos de Epóxi/toxicidade , Acrilamida/toxicidade , Animais , Bovinos , Cromatografia Líquida , Ensaio Cometa/métodos , DNA , Adutos de DNA , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Espectrometria de Massas , Mutagênicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA