Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biosystems ; 246: 105321, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233109

RESUMO

The attention system underwent important evolutionary changes and specializations in the human genus. In fact, our outstanding social and technological complexity strictly depends on our attentional ability, which is sustained, intentional, and conscious. Attention, intention, and awareness are key features for what can be defined a mindful cognition, and we may wonder whether a specific combination of these cognitive traits may be the result of a natural selective process, or else an accidental by-product of mental complexity. In this article, basic concepts in evolutionary anthropology are reviewed, to consider whether positive, neutral, or negative selective forces might have influenced the evolution of a mindful cognitive ability. At present, all these alternatives are potentially supported by different kinds of evidence. Hybrid hypotheses, considering stabilizing mechanisms or distinct social roles and intra-specific variation, are also likely. An evolutionary approach to the cognitive abilities involved in attention and awareness can reveal potentialities, limitations, and drawbacks of our individual and collective natural behaviors, especially when dealing with the evolution of the human consciousness.

2.
J Anat ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822698

RESUMO

The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria.

3.
Am J Biol Anthropol ; 185(1): e24988, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38877829

RESUMO

Spatial interactions among anatomical elements help to identify topological factors behind morphological variation and can be investigated through network analysis. Here, a whole-brain network model of the chimpanzee (Pan troglodytes, Blumenbach 1776) is presented, based on macroanatomical divisions, and compared with a previous equivalent model of the human brain. The goal was to contrast which regions are essential in the geometric balance of the brains of the two species, to compare underlying phenotypic patterns of spatial variation, and to understand how these patterns might have influenced the evolution of human brain morphology. The human and chimpanzee brains share morphologically complex inferior-medial regions and a topological organization that matches the spatial constraints exerted by the surrounding braincase. These shared topological features are interesting because they can be traced back to the Chimpanzee-Human Last Common Ancestor, 7-10 million years ago. Nevertheless, some key differences are found in the human and chimpanzee brains. In humans, the temporal lobe, particularly its deep and medial limbic aspect (the parahippocampal gyrus), is a crucial node for topological complexity. Meanwhile, in chimpanzees, the cerebellum is, in this sense, more embedded in an intricate spatial position. This information helps to interpret brain macroanatomical change in fossil hominids.


Assuntos
Encéfalo , Pan troglodytes , Pan troglodytes/anatomia & histologia , Animais , Humanos , Encéfalo/anatomia & histologia , Evolução Biológica , Masculino , Feminino , Antropologia Física
4.
Anat Rec (Hoboken) ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465854

RESUMO

The term craniovascular traits refers to the imprints left by arteries and veins on the skull bones. These features can be used in biological anthropology and archaeology to investigate the morphology of the vascular network in extinct species and past populations. Generally, the term refers to macrovascular features of the endocranial cavity, like those associated with the middle meningeal artery, venous sinuses, emissary foramina, and diploic channels. However, small vascular passages (here called microforamina or microchannels) have been occasionally described on the endocranial surface. The larger ones (generally with a diameter between 0.5 and 2.0 mm) can be detected through medical scanners on osteological collections. In this study, we describe and quantify the number and distribution of these microforamina in adult humans (N = 45) and, preliminarily, in a small sample of children (N = 7). Adults display more microchannels than juvenile skulls. A higher frequency in females is also observed, although this result is not statistically significant and might be associated with allometric cranial variations. The distribution of the microforamina is particularly concentrated on the top of the vault, in particular along the sagittal, metopic, and coronal sutures, matching the course of major venous sinuses and parasagittal bridging veins. Nonetheless, the density is lower in the region posterior to bregma. Beyond oxygenation, these vessels are likely involved in endocranial thermal regulation, infection, inflammation, and immune responses, and their distribution and prevalence can hence be of interest in human biology, evolutionary anthropology, and medicine.

5.
J Comp Neurol ; 532(1): e25583, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289186

RESUMO

Evolutionary anthropology relies on both neontological and paleontological information. In the latter case, fields such as paleoneurology, neuroarchaeology, and cognitive archaeology are supplying new perspectives in prehistory and neuroscience. Cognitive archaeology, in particular, investigates the behaviors associated with extinct species or cultures according to specific psychological models. For example, changes in working memory, attention, or visuospatial integration can be postulated when related behavioral changes are described in the archaeological record. However, cognition is a process based on different and partially independent functional elements, and extinct species could hence have evolved distinct combinations of cognitive abilities or features, based on both quantitative and qualitative differences. Accordingly, differences in working memory can lead to more conceptual or more holistic mindsets, with important changes in the perception and management of the mental experience. The parietal cortex is particularly interesting, in this sense, being involved in functions associated with body-tool integration, attention, and visual imaging. In some cases, evolutionary mismatches among these elements can induce drawbacks that, despite their positive effects on natural selection, can introduce important constraints in our own mental skills. Beyond the theoretical background, some hypotheses can be tested following methods in experimental psychology. In any case, theories in cognitive evolution must acknowledge that, beyond the brain and its biology, the human mind is also deeply rooted in body perception, in social networks, and in technological extension.


Assuntos
Arqueologia , Neurociências , Humanos , Cognição , Encéfalo , Memória de Curto Prazo
6.
Anat Rec (Hoboken) ; 307(2): 345-355, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37615332

RESUMO

Humans possess morphologically complex brains, which are spatially constrained by their many intrinsic and extrinsic physical interactions. Anatomical network analysis can be used to study these constraints and their implications. Modularity is a key issue in this framework, namely, the presence of groups of elements that undergo morphological evolution in a concerted way. An array of community detection algorithms was tested on a previously designed anatomical network model of the human brain in order to provide a detailed assessment of modularity in this context. The algorithms that provide the highest quality partitions also reveal general phenotypic patterns underlying the topology of human brain morphology. Taken together, the community detection algorithms highlight the simultaneous presence of a longitudinal and a vertical modular partition of the brain's topology, the combination of which matches the organization of the enveloping braincase. Specifically, the longitudinal organization is in line with the different morphogenetic environments of the three endocranial fossae, while the vertical arrangement corresponds to the distinct developmental processes associated with the cranial base and vault, respectively. The results are robust and have the potential to be compared with equivalent network models of other species. Furthermore, they suggest a degree of concerted topological reciprocity in the spatial organization of brain and skull elements, and posit questions about the extent to which geometrical constraints of the cranial base and the modular partition of the corresponding brain regions may channel both evolutionary and developmental trajectories.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Crânio/anatomia & histologia , Base do Crânio/anatomia & histologia , Encéfalo/anatomia & histologia , Modelos Anatômicos
7.
J Anat ; 244(2): 274-296, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37935387

RESUMO

Palaeoneurology is a complex field as the object of study, the brain, does not fossilize. Studies rely therefore on the (brain) endocranial cast (often named endocast), the only available and reliable proxy for brain shape, size and details of surface. However, researchers debate whether or not specific marks found on endocasts correspond reliably to particular sulci and/or gyri of the brain that were imprinted in the braincase. The aim of this study is to measure the accuracy of sulcal identification through an experiment that reproduces the conditions that palaeoneurologists face when working with hominin endocasts. We asked 14 experts to manually identify well-known foldings in a proxy endocast that was obtained from an MRI of an actual in vivo Homo sapiens head. We observe clear differences in the results when comparing the non-corrected labels (the original labels proposed by each expert) with the corrected labels. This result illustrates that trying to reconstruct a sulcus following the very general known shape/position in the literature or from a mean specimen may induce a bias when looking at an endocast and trying to follow the marks observed there. We also observe that the identification of sulci appears to be better in the lower part of the endocast compared to the upper part. The results concerning specific anatomical traits have implications for highly debated topics in palaeoanthropology. Endocranial description of fossil specimens should in the future consider the variation in position and shape of sulci in addition to using models of mean brain shape. Moreover, it is clear from this study that researchers can perceive sulcal imprints with reasonably high accuracy, but their correct identification and labelling remains a challenge, particularly when dealing with extinct species for which we lack direct knowledge of the brain.


Assuntos
Hominidae , Crânio , Humanos , Animais , Crânio/anatomia & histologia , Encéfalo , Fósseis , Imageamento por Ressonância Magnética , Evolução Biológica
8.
J Intell ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754912

RESUMO

Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.

9.
Am J Biol Anthropol ; 181(2): 206-215, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810873

RESUMO

The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5-1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.


Assuntos
Hominidae , Animais , Humanos , Lactente , Hominidae/anatomia & histologia , Etiópia , Evolução Biológica , Crânio/anatomia & histologia , Encéfalo/anatomia & histologia
10.
Am J Biol Anthropol ; 180(4): 768-776, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789740

RESUMO

OBJECTIVES: Two decades ago, Rilling and Seligman, hereafter abbreviated to RAS Study, suggested modern humans had relatively larger temporal lobes for brain size compared to other anthropoids. Despite many subsequent studies drawing conclusions about the evolutionary implications for the emergence of unique cerebral specializations in Homo sapiens, no re-assessment has occurred using updated methodologies. METHODS: We reassessed the association between right temporal lobe volume (TLV) and right hemisphere volume (HV) in the anthropoid brain. In a sample compiled de novo by us, T1-weighted in vivo Magnetic Resonance Imaging (MRI) scans of 11 extant anthropoid species were calculated by-voxel from the MRI and the raw data from RAS Study directly compared to our sample. Phylogenetic Generalized Least-Squares (PGLS) regression and trait-mapping using Blomberg's K (kappa) tested the correlation between HV and TLV accounting for anthropoid phylogeny, while bootstrapped PGLS regressions tested difference in slopes and intercepts between monkey and ape subsamples. RESULTS: PGLS regressions indicated statistically significant correlations (r2 < 0.99; p ≤ 0.0001) between TLV and HV with moderate influence from phylogeny (K ≤ 0.42). Bootstrapped PGLS regression did not show statistically significant differences in slopes between monkeys and apes but did for intercepts. In our sample, human TLV was not larger than expected for anthropoids. DISCUSSION: Updated imaging, increased sample size and advanced statistical analyses did not find statistically significant results that modern humans possessed a disproportionately large temporal lobe volume compared to the general anthropoid trend. This has important implications for human and non-human primate brain evolution.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Filogenia , Haplorrinos , Primatas , Lobo Temporal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA