Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1382595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756964

RESUMO

Introduction: The use of treated municipal wastewater (TWW) represents a relevant opportunity for irrigation of agricultural crops in semi-arid regions to counter the increasing water scarcity. Pharmaceutically active compounds (PhACs) are often detected in treated wastewater, posing a risk to humans and the environment. PhACs can accumulate in soils and translocate into different plant tissues, reaching, in some cases, edible organs and entering the food chain. Methods: This study evaluated the uptake and translocation processes of 10 PhACs by olive trees irrigated with TWW, investigating their accumulation in different plant organs. The experiment was conducted in southern Italy, in 2-year-old plants irrigated with three different types of water: freshwater (FW), TWW spiked with 10 PhACs at a concentration of 200 µg L-1 (1× TWW), and at a triple dose (3× TWW), from July to October 2021. The concentration of PhACs in soil and plant organs was assessed, collecting samples of root, stem, shoot, leaf, fruit, and kernel at 0 (T0), 50 (T1), and 107 (T2) days of irrigation. PhACs extraction from soil and plant organs was carried out using the QuEChERS method, and their concentrations were determined by high-resolution mass spectrometry coupled with liquid chromatography. Results: Results of uptake factors (UF) showed a different behavior between compounds according to their physicochemical properties, highlighting PhACs accumulation and translocation in different plant organs (also edible part) in 1× TWW and 3× TWW compared to FW. Two PhACs, carbamazepine and fluconazole, showed interactions with the soil-plant system, translocating also in the aerial part of the plant, with a translocation factor (TF) greater than 1, which indicates high root-to-leaf translocation. Discussion: Findings highlight that only few PhACs among the selected compounds can be uptaken by woody plants and accumulated in edible parts at low concentration. No effects of PhACs exposure on plant growth have been detected. Despite the attention to be paid to the few compounds that translocate into edible organs, these results are promising for adapting wastewater irrigation in crops. Increasing knowledge about PhACs behavior in woody plants can be important for developing optimized wastewater irrigation and soil management strategies to reduce PhACs accumulation and translocation in plants.

2.
Plants (Basel) ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674489

RESUMO

Research on nanoparticles (NPs) is gaining great attention in modulating abiotic stress tolerance and improving crop productivity. Therefore, this investigation was carried out to evaluate the effects of copper oxide nanoparticles (CuO-NPs) on growth and biochemical characteristics in two maize hybrids (YH-5427 and FH-1046) grown under normal conditions or subjected to saline stress. A pot-culture experiment was carried out in the Botanical Research Area of "the University of Lahore", Lahore, Pakistan, in a completely randomized design. At two phenological stages, both maize hybrids were irrigated with the same amount of distilled water or NaCl solution (EC = 5 dS m-1) and subjected or not to foliar treatment with a suspension of CuO-NPs. The salt stress significantly reduced the photosynthetic parameters (photosynthetic rate, transpiration, stomatal conductance), while the sodium content in the shoot and root increased. The foliar spray with CuO-NPs improved the growth and photosynthetic attributes, along with the N, P, K, Ca, and Mg content in the roots and shoots. However, the maize hybrid YH-5427 responded better than the other hybrid to the saline stress when sprayed with CuO-NPs. Overall, the findings of the current investigation demonstrated that CuO-NPs can help to reduce the adverse effects of salinity stress on maize plants by improving growth and physio-biochemical attributes.

3.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470737

RESUMO

Magnetic chitosan nanoparticles, synthesized by in situ precipitation, have been used as adsorbents to remove sulfamethoxazole (SMX), a sulfonamide antibiotic dangerous due to its capacity to enter ecosystems. The adsorption of SMX has been carried out in the presence of tertiary wastewaters from a depuration plant to obtain more realistic results. The effect of pH on the adsorption capacity significantly changed when carrying out the experiments in the presence of wastewater. This change has been explained while taking into account the charge properties of both the antibiotic and the magnetic chitosan. The composition of wastewaters has been characterized and discussed as regards its effect on the adsorption capacity of the magnetic chitosan. The models of Elovich and Freundlich have been selected to describe the adsorption kinetics and the adsorption isotherms, respectively. The analysis of these models has suggested that the adsorption mechanism is based on strong chemical interactions between the SMX and the magnetic chitosan, leading to the formation of an SMX multilayer.

4.
Front Plant Sci ; 14: 1238163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692419

RESUMO

The reuse of treated wastewater for crop irrigation is vital in water-scarce semi-arid regions. However, concerns arise regarding emerging contaminants (ECs) that persist in treated wastewater and may accumulate in irrigated crops, potentially entering the food chain and the environment. This pilot-scale study conducted in southern Italy focused on tomato plants (Solanum lycopersicum L. cv Taylor F1) irrigated with treated wastewater to investigate EC uptake, accumulation, and translocation processes. The experiment spanned from June to September 2021 and involved three irrigation strategies: conventional water (FW), treated wastewater spiked with 10 target contaminants at the European average dose (TWWx1), and tertiary WWTP effluent spiked with the target contaminants at a triple dose (TWWx3). The results showed distinct behavior and distribution of ECs between the TWWx1 and TWWx3 strategies. In the TWWx3 strategy, clarithromycin, carbamazepine, metoprolol, fluconazole, and climbazole exhibited interactions with the soil-plant system, with varying degradation rates, soil accumulation rates, and plant accumulation rates. In contrast, naproxen, ketoprofen, diclofenac, sulfamethoxazole, and trimethoprim showed degradation. These findings imply that some ECs may be actively taken up by plants, potentially introducing them into the food chain and raising concerns for humans and the environment.

5.
Plants (Basel) ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765499

RESUMO

To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L-1 as PbCl2) applied through growth medium to two maize hybrids H-3310S and H-6724. The research findings indicated that growth and metabolic activities were adversely affected by increased Pb contamination in growth medium; however, a slow increase in these parameters was recorded with increasing time from 0 to 120 h. Protease activity decreased with an increase in the level of Pb contamination but increased with time; consequently, a reduction in seed proteins and an increase in total free amino acids were observed with time. Similarly, α-amylase activity decreased with an increase in Pb concentration in growth medium while it increased with increasing time from 0 to 120 h; consequently, reducing and non-reducing sugars increased with time but decreased with exposure to lead. The roots of both maize hybrids had higher Pb contents than those of the shoot, which decreased the uptake of nitrogen, phosphorus, and potassium. All these nutrients are essential for optimal plant growth; therefore, the reduction in growth and biomass of maize seedlings could be due to Pb toxicity that altered metabolic processes, as sugar and amino acids are necessary for the synthesis of metabolic compounds, rapid cell division, and proper functioning of enzymes in the growing embryo, but all were dramatically reduced due to suppression of protease and α-amylase by toxicity of Pb. In general, hybrid H-3310S performed better in Pb-contaminated growth medium than H-6724.

6.
Environ Sci Pollut Res Int ; 30(12): 33349-33362, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474042

RESUMO

The irrigation with treated wastewater is among the main anthropogenic sources for the release of pharmaceuticals (PhACs) into the soils and their translocation into crops, with possible toxic and adverse effects on humans. The arbuscular mycorrhizal fungi (AMF) can be employed for the reduction of organic soil pollutants, even if their efficiency depends on the mycorrhizal fungi, the plant colonized, and the type and concentration of the contaminant. This study aimed to evaluate the uptake of PhACs from wastewaters of different qualities used for the irrigation of mycorrhizal artichoke plants, the presence in their edible parts and the role of the arbuscular mycorrhizal fungi. The research was carried out on artichoke plants not inoculated and inoculated with two different AMF and irrigated with treated wastewater (TW), groundwater (GW) or GW spiked with different and selected PhACs (SGW). The inocula were a crude inoculum of Septoglomus viscosum (MSE) and a commercial inoculum of Glomus intraradices and Glomus mosseae (MSY). The results of the present study showed that carbamazepine and fluconazole were found in the artichoke only with SGW irrigation. The mycorrhizal plants showed a reduction of the pharmaceutical's uptake, and within the AMF, MSE was more effective in preventing their absorption and translocation.


Assuntos
Cynara scolymus , Micorrizas , Poluentes do Solo , Humanos , Águas Residuárias , Solo , Plantas/microbiologia , Poluentes do Solo/análise , Preparações Farmacêuticas , Raízes de Plantas/química
7.
Chemosphere ; 311(Pt 2): 137126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334739

RESUMO

The fluctuation in the number of people in tourist areas affects the wastewater quality and quantity. Constructed wetlands (CWs) aim to simulate physical, chemical, and biological processes occurring in natural environments for wastewater treatment and are considered a sustainable system. The current study aimed at evaluating the effectiveness of in-vessel CWs for supporting the wastewaters treatment plants in periods of overloading. Such approach can be quickly implementable, economic, and the CWs can be fast regenerated in the framework of sustainable good practices. Three pilot scale CWs were prepared in as many containers layering 10 cm of gravel, 60 cm of sand and 10 cm of gravel, and placing pieces of giant reed rhizomes in the upper layers. The bottom of each CW had a tap, and CWs were irrigated with a real municipal sewage three times a week. Before each new irrigation, the tap was opened, and the effluent collected for determining gross parameters, elemental composition, and contaminants of emerging concern (CECs). CWs significantly reduced almost all gross parameters considered and half the CECs, except for a couple of metabolites of corresponding parental compounds. With regards to the potentially toxic elements, all reduced their concentration from the influents to the effluents. The results of this study were promising and highlighted good efficiency of constructed wetlands as pre-treatment of real municipal sewage to reduce the overloading of the wastewater treatment plant.

8.
Sci Rep ; 12(1): 18548, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329111

RESUMO

Soil degradation resulting from deforestation contributes to a dramatic decline in soil quality whose restoration must go through reforestation with pioneer species. We investigated the effects of cypress and black locust, pioneer but exotic species, on soil chemical properties and microbial and enzymatic activities of two marginal soils. The sampling sites were Lama Giulia and Locone lake in the Murge plateau of the Apulia Region, Italy. The soils at Lama Giulia presented a silty loam texture, while at Locone Lake site were sandy, and most likely due to the different texture, the former exhibited higher organic C, N, P and micronutrients contents than Locone Lake under black locust reforestation, despite the latter was reforested earlier. In addition, the higher microbial entropy and turnover of Locone Lake's soils suggested a less conservative soil state than Lama Giulia's soils. The effects of black locust reforestation at Lama Giulia on almost all soil parameters considered did not differ from those of the corresponding pasture, confirming the more conservative soil state in that site and suggesting that the time of reforestation was not enough to get differences between the reforested and not reforested soil. The soils reforested with cypress showed the significantly highest SOC, N, dissolved organic C and microbial biomass C content. In addition, it presented also the numerically largest dehydrogenase, phosphatase and ß-glucosidase activities, soluble carbohydrates, and phenolic compounds content. These results may be ascribed to the longer litter deposition occurred in cypress soils.


Assuntos
Poluentes do Solo , Solo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biomassa , Itália
9.
PLoS One ; 17(4): e0267219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476844

RESUMO

The current social context requires an increase in food production, improvement of its quality characteristics and greater environmental sustainability in the management of agricultural systems. Technological innovation plays a great role in making agriculture more efficient and sustainable. One of the main aims of precision farming (PF) is optimizing yield and its quality, while minimizing environmental impacts and improving the efficient use of resources. Variable rate techniques (VRT) are amongst the main management options for PF, and they require spatial information. This work incorporates maps of soil properties from low induction electromagnetic measurements into nitrogen (N) balance calculations for a field application of VRT nitrogen fertilization of (Triticum durum Desf., var. Tirex). The trial was conducted in 2018-19 at Genzano di Lucania (PZ, Italy) geologically located on the clayey hillsides of the Bradanica pit and the Sant'Arcangelo basin. Three soil homogeneous areas were detected through low induction electromagnetic measurements and used as uniform management zones. The amount of nitrogen fertilizer to be applied by VRT was calculated on the base of estimated crop nitrogen uptake and soil characteristics of each homogeneous area. Crop response to VRT was compared to uniform nitrogen application (UA) on the whole field. The application of VRT resulted in a reduction of 25% nitrogen fertilizer with the same level of yield respect to UA. Grain protein content, as well as gluten content and N content, were significantly higher in VRT than in UA. As a consequence of lower nitrogen input and higher levels of N removal, VRT reached a higher nitrogen use efficiency than UA, and this indicates a lower environmental impact and a higher economic profitability.


Assuntos
Nitrogênio , Triticum , Fertilização , Fertilizantes/análise , Nitrogênio/metabolismo , Solo , Triticum/metabolismo
10.
Foods ; 11(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053921

RESUMO

In an era characterized by land degradation, climate change, and a growing population, ensuring high-yield productions with limited resources is of utmost importance. In this context, the use of novel soil amendments and the exploitation of plant growth-promoting microorganisms potential are considered promising tools for developing a more sustainable primary production. This study aimed at investigating the potential of bread, which represents a large portion of the global food waste, to be used as an organic soil amendment. A bioprocessed wasted bread, obtained by an enzymatic treatment coupled with fermentation, together with unprocessed wasted bread were used as amendments in a pot trial. An integrated analytical plan aimed at assessing (i) the modification of the physicochemical properties of a typical Mediterranean alkaline agricultural soil, and (ii) the plant growth-promoting effect on escarole (Cichorium endivia var. Cuartana), used as indicator crop, was carried out. Compared to the unamended soils, the use of biomasses raised the soil organic carbon content (up to 37%) and total nitrogen content (up to 40%). Moreover, the lower pH and the higher organic acid content, especially in bioprocessed wasted bread, determined a major availability of Mn, Fe, and Cu in amended soils. The escaroles from pots amended with raw and bioprocessed bread had a number of leaves, 1.7- and 1.4-fold higher than plants cultivated on unamended pots, respectively, showing no apparent phytotoxicity and thus confirming the possible re-utilization of such residual biomasses as agriculture amendments.

11.
PLoS One ; 14(6): e0219099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31247049

RESUMO

The changes in soil organic matter composition induced by anthropogenic factors is a topic of great interest for the soil scientists. The objective of this work was to identify possible structural changes in humic molecules caused by a 2-year rotation of durum wheat with faba bean, lasted for a decade, and conducted with different agricultural practices in a Mediterranean soil. Humic acids (HA) were extracted at three depths (0-30, 30-60 and 60-90 cm) from a Mediterranean soil subjected to different tillage (no tillage, minimum tillage and conventional tillage), crops (faba bean and wheat), and fertilization. The changes in HA quality were assessed by several chemical (ash, yield and elemental analysis) and spectroscopic techniques (solid-state 13C nuclear magnetic resonance, Fourier transform infrared and fluorescence). The results suggest that the different agronomic practices strongly affected the quality of HA. Smaller but more aromatic molecules were observed with depth, while the fertilization induced the formation of simpler and less aromatic molecules due to the enhanced decomposition processes. Under no tillage, more stable humic molecules were observed due to the less soil aeration, while under conventional tillage larger and more aromatic molecules were obtained. Compared to wheat, more aromatic and more oxidized but less complex molecules were observed after faba bean crop. The inorganic fertilization accelerates the decomposition of organic substances rather than their stabilization. At the end of each crop cycle, humic matter of different quality was isolated and this confirms the importance of the rotation practice to guarantee a diversification of the soil organic matter with time. Finally, no tillage induces the formation of more stable humic matter.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/química , Substâncias Húmicas/análise , Solo/química , Ciclo do Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum/química , Triticum/crescimento & desenvolvimento , Vicia faba/química , Vicia faba/crescimento & desenvolvimento
12.
Environ Sci Pollut Res Int ; 25(33): 33556-33565, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269278

RESUMO

In recent years, the massive exploitation of agricultural land intended to meet growing food demand has led to a reduction in soil fertility through the depletion of nutrients and organic matter. To implement sustainable agriculture, it is necessary to reduce soil tillage and use residual biomasses that are easily available in the region as soil amendments. Furthermore, it is important to test these residual biomasses in order to exclude a possible increase of heavy metals in soils due to the incorporation of the aforementioned biomasses. The current study aimed to evaluate the effects on soil fertility and health following the application of organic fertilizers combined with different soil tillage practices and the agronomic response of Brassica carinata A. (Braun). The soil tillage treatments consisted of conventional (CT) and minimum tillage (MT), whereas the fertilization treatments were mineral fertilizer (Nmin), municipal solid waste compost (Ncomp), mixed compost and mineral fertilizer (Nmix), and sewage sludge (Nss). These treatments were compared with an unfertilized control (N0). The Ncomp and Nss treatments enhanced soil fertility, increasing the organic carbon and available phosphorus concentrations compared with N0 and Nmin, whereas no significant difference was showed between the soil tillage treatments in terms of soil fertility. In addition, Nss did not show any significant difference compared to Nmin in terms of crop biomass, whereas this parameter appeared higher in CT compared with MT. A principal component analysis showed that the concentrations of toxic elements applied by the organic amendments did not change the dynamic equilibrium of the soil-plant system. Over the short term, the replacement of CT and Nmin with MT and Nss can be achieved, thus guaranteeing the sustainable cultivation of Brassica, without significant changes in heavy metal concentration in soil.


Assuntos
Brassica/crescimento & desenvolvimento , Fertilizantes/análise , Agricultura Orgânica/métodos , Solo/química , Biomassa , Brassica/metabolismo , Itália , Região do Mediterrâneo , Metais Pesados/análise , Esgotos/química , Poluentes do Solo/análise , Resíduos Sólidos/análise
13.
Sci Total Environ ; 645: 1221-1229, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248847

RESUMO

Polymeric protein-based biocomposites were used in this work as water dispersions to generate, in situ, biobased mulching coatings by spray technique, as alternative to low density polyethylene films for soil mulching. At the end of their lifetime, these biodegradable coatings degrade in soil thank to the microbial community that mineralizes them. Protein hydrolysates (PH) were derived from waste products of the leather industry, while poly(ethylene glycol) diglycidyl ether (PEG) and epoxidized soybean oil (ESO) were used to make the biodegradable spray coatings. A study under greenhouse condition was carried out using seedling test plots in order to investigate the performance of the spray coatings and their possible influence on some aspects of leaf growth, functionality and nutritional quality of lettuce (Lactuca sativa L., Mortarella selection Romanella variety Duende) and on soil properties. The biodegradable coatings showed the same good agronomic performances comparable with the ones of a commercial low density polyethylene mulching film, maintaining the mulching effect for the requested cultivation period and ensuring at the same time a similar rate of plant growth and dry matter accumulation. The research showed that 2 months after the tillage carried out at the end of the cultivation the amount of coating residues present in the soil was <5% of the initial weight of the biodegradable coatings. At the end of the field test, the soil mulched with the polyethylene film recorded an electrical conductivity value lower with respect to the soil mulched with the sprayed coatings, which release nutrients in the soil during their decomposition.


Assuntos
Agricultura/métodos , Solo/química , Folhas de Planta , Água
14.
Chemosphere ; 111: 184-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997917

RESUMO

The aim of this study was to elucidate the heterogeneous structural and functional composition of humic acids (HAs) and dissolved organic matter (DOM) isolated from two Alfisol profiles with different soil texture, in order to develop a better understanding of the organic matter dynamics. Soil samples were collected at different depths from three (Ap, 2AB and 2Bt) and eight (A1, A2, A3, E1, E2, 2Bt1, 2Bt2 and 2Bt3) soil horizons of two Alfisols located in the south (PR1) and north (PR2) of Italy, with a clay texture and a silt loam to loam ones, respectively. Chemical and spectroscopic methods were used to characterize the HAs and the DOM isolated from different soil horizons, including Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR), and Fluorescence spectroscopies. The HAs and the DOM isolated from the two Alfisols apparently showed significant differences in their compositional, structural and functional characteristics. In particular, the HAs isolated from the PR1 featured a higher degree of humification and molecular complexity with respect to those isolated from the PR2. On the contrary, the DOM samples isolated from the PR2 showed a more marked aromatic character and polycondensation degree. Both the HAs and the DOM obtained from the PR1 presented a greater qualitative homogeneity with respect to those obtained from the PR2. These results could be reasonably ascribed to the different texture and horizons of the two Alfisols, and to a greater pedogenesis occurred in the PR1.


Assuntos
Monitoramento Ambiental , Substâncias Húmicas/análise , Compostos Orgânicos/química , Poluentes do Solo/análise , Espectrometria de Fluorescência , Itália , Compostos Orgânicos/isolamento & purificação , Solo/química , Poluentes do Solo/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Environ Sci Pollut Res Int ; 19(8): 3636-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22573098

RESUMO

Greenhouse and field studies were performed to examine the growth responses and possible phytoremediation capacity towards heavy metals of several Brassicaceae (Brassica alba, Brassica carinata, Brassica napus and Brassica nigra) and Poaceae (durum wheat and barley). Soils used featured total concentrations of Cr, Cu, Pb and Zn largely exceeding the maximum levels permitted by the Italian laws. Different organic amendments were tested such as a compost and the plant growth-promoting rhizobacterium Bacillus licheniformis. In the greenhouse experiment, plant length, leaf area index and shoots dry matter were evaluated periodically for the Brassicaceae examined. Whereas plant length, grains production, weight of 1,000 seeds, ear fertility and tiller density were determined under field conditions at the end of the crop cycle for wheat and barley. In general, the species tested appeared to be tolerant to high heavy metal concentrations in soil, and slightly significant differences were found for all parameters considered. A marked growth increase was shown to occur for Brassicaceae cultivated on compost- and bacillus-amended contaminated soils, with respect to non-amended contaminated soils. With some exception, higher growth parameters were measured for wheat and barley plants cropped from contaminated soils in comparison to non-contaminated soils. Further, bacillus amendment enhanced the length of wheat and barley plants in both non-contaminated and contaminated soils, while different effects were observed for the other parameters evaluated.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Metais Pesados/toxicidade , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Bacillus , Produtos Agrícolas/microbiologia , Plantas Daninhas/microbiologia , Solo/química , Microbiologia do Solo
16.
Environ Monit Assess ; 184(4): 2079-89, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21573856

RESUMO

The effects of grapemarc distillery effluents on the quality of soil organic matter is extremely important to ensure the environmentally-safe and agronomically efficient use of these materials as organic amendment. In this work, the effects of the application of untreated (UG) and anaerobically digested grapemarc distillery effluents, either added with (AGM) or without mycorrhiza (AG), on soil humic acid (HA) were investigated in field plot experiments in comparison to HAs from a control soil and an inorganic fertilized soil. The humic acid-like fractions (HALs) isolated from UG, AG and soils were characterized for compositional, structural and functional properties by the use of elemental and functional group analysis, and ultraviolet/visible, Fourier transform infrared and fluorescence spectroscopies. Results obtained indicated that anaerobic digestion of effluents produced an extended mineralization with loss of organic C and stabilization of residual organic matter by increasing the content of HALs in the effluent. With respect to control soil HA, HALs isolated from UG and AG were characterized by smaller acidic functional group contents, a prevalent aliphatic character and smaller aromatic polycondensation and humification degrees. The chemical and spectroscopic characteristics of native soil HA were not substantially modified by application of UG, AG and AGM to soil, which suggests the occurred incorporation of the effluent HAL into native soil HA. In conclusion, these results showed the possibility of a beneficial and safe recycling of grapemarc distillery effluents as soil amendment.


Assuntos
Destilação , Monitoramento Ambiental/métodos , Frutas , Substâncias Húmicas/análise , Resíduos Industriais , Poluentes do Solo/análise , Humanos , Itália
17.
J Agric Food Chem ; 57(22): 10859-65, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19860371

RESUMO

A spent mushroom substrate (SMS) was mixed with wheat straw (WS) in three proportions, C1 (2:1), C2 (4:1), and C3 (6:1), and composted for 90 days in static piles with periodic turning to ensure adequate aeration. Samples from each pile were collected periodically (after 0, 30, 60, and 90 days), and the humic acid-like fractions (HAs) were isolated to determine their elemental composition (C, H, N, S, and O), acidic functional group (carboxylic and phenolic) content, and structural and functional characteristics using spectroscopic methods including ultraviolet-visible, Fourier transform infrared (FTIR), and fluorescence. The results of elemental and functional group analyses show that, with increasing time of composting, the N, O, and acidic functional group contents of HAs increase, whereas their C and H contents and C/N ratio decrease. The analysis of FTIR and fluorescence spectra shows that, with increasing composting time, the presence of aliphatic and polysaccharide-like structures in HAs decreases, whereas oxygenation, polycondensation, and polymerization increase. These results suggest that the chemical and structural characteristics of the HA fractions in the final composts resemble those typical of native soil HAs, which indicate that an adequate degree of maturity and stability is achieved after the end of composting. The results of the present study confirm that composting is an appropriate treatment to transform fresh organic matter (OM) in SMS into humified forms, thus enhancing their quality, agronomic efficiency, and environmental safety as a soil OM resource for application as soil amendment.


Assuntos
Agaricales/química , Substâncias Húmicas/análise , Solo/análise , Triticum/química , Carbono/análise , Hidrogênio/análise , Nitrogênio/análise , Oxigênio/análise , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Bioresour Technol ; 98(10): 1964-71, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17197175

RESUMO

Fulvic acids (FAs) were isolated by a conventional procedure from two mixtures of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in open-air pond and tree cuttings (TC) at different stages of the co-composting process. The FAs were analyzed for elemental (C, H, N, S, O) and acidic functional group (carboxylic and phenolic) composition, and by ultraviolet/visible, Fourier transform infrared and fluorescence spectroscopies. At the initial stage of composting, FAs from the OMW sludge-TC mixtures were characterized by a prevalent aliphatic character, large contents of C, S-containing groups, proteinaceous materials and polysaccharide components, extended molecular heterogeneity, small O and acidic functional group contents, and small degrees of aromatic ring polycondensation, polymerization and humification. As composting proceeded, C, H and S contents, C/N ratio, and aliphaticity decreased, whereas N, O, COOH and phenolic OH contents, C/H and O/C ratios, and aromaticity increased. These results suggested that, with increasing the composting time, the chemical and structural properties of the FA components of the two OMW sludge-TC mixtures approached the characteristics typical of native soil FAs. Thus, co-composting of OMW sludge mixed with TC may represent a suitable treatment for enhancing the quality of organic matter in these materials when used as soil amendments.


Assuntos
Benzopiranos/química , Indústria Alimentícia , Resíduos Industriais , Óleos de Plantas , Esgotos/química , Benzopiranos/isolamento & purificação , Fracionamento Químico , Substâncias Húmicas , Azeite de Oliva , Eliminação de Resíduos , Solo , Espectroscopia de Infravermelho com Transformada de Fourier , Árvores/química , Eliminação de Resíduos Líquidos
19.
Anal Bioanal Chem ; 386(7-8): 2133-40, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17043796

RESUMO

Fluorescence spectroscopy has been used to probe the structural properties and Cu(II), Zn(II), Cd(II), and Pb(II)-binding behavior of humic acid (HA)-like fractions isolated from a municipal solid waste compost (MSWC) and HAs from unamended and MSWC-amended soils. The main feature of the fluorescence spectra, in the form of emission-excitation matrix (EEM) plots, was a broad peak with the maximum centered at an excitation/emission wavelength pair that was much shorter (340/437 nm) for MSWC-HA than for unamended and MSWC-amended soil HAs (455/513 and 455/512 nm, respectively). Fluorescence intensity for MSWC-amended soil HA was less than that for unamended soil HA. These results were indicative of more aromatic ring polycondensation and humification of soil HAs, and of partial incorporation of simple and low-humified components of MSWC-HA into native soil HA, as a result of MSWC amendment. Titrations of HAs with Cu(II), Zn(II), Cd(II), and Pb(II) ions at pH 6 and ionic strength 0.1 mol L(-1) resulted in a marked decrease of the fluorescence intensities of untreated HAs. By successfully fitting a single-site fluorescence-quenching model to titration data, the metal ion complexing capacities of each HA and the stability constants of metal ion-HA complexes were obtained. The binding capacities and stability constants of MSWC-HA were smaller than those of the unamended soil HA. Application of MSWC to soil slightly reduced the metal-ion-binding capacities and affinities of soil HAs.


Assuntos
Substâncias Húmicas/análise , Metais/análise , Metais/química , Eliminação de Resíduos , Poluentes do Solo/análise , Espectrometria de Fluorescência/métodos , Íons/química , Modelos Químicos
20.
Environ Sci Technol ; 40(3): 917-23, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16509337

RESUMO

Humic acids (HAs) isolated from sewage sludge (SS) and control and SS-amended soils were characterized by fluorescence spectroscopy. The main feature of fluorescence spectra was a broad band with the maximum centered at excitation/emission wavelengths that were much shorter for SS-HA (340/438 nm) than for any soil HA (440/510 nm). Titration with Cu(II), Zn(II), Cd(II), and Pb(II) ions decreased fluorescence intensities of HAs. Titration data were fitted to a single-site fluorescence quenching model, and metal ion complexing capacities of each HA sample and stability constants of metal ion-HA complexes were calculated. The binding capacities of HAs and strengths of metal ion-HA complexes followed the order Pb(II) > Cu(II) > Cd(II) > Zn(II). With respect to the control soil HA, SS-HA, which showed the smallest contents of acidic functional groups and the lowest humification degree, was characterized by much smaller binding capacities and stability constants. The binding capacities and affinities of SS-amended soil HA were intermediate between those of native soil HA and SS-HA but closer to the former, thus suggesting a partial incorporation of HA fractions of SS into native soil HAs. These effects are expected to have a great impact on the behavior of metals in SS-amended soils.


Assuntos
Substâncias Húmicas , Metais Pesados/química , Esgotos/química , Microscopia de Fluorescência , Eliminação de Resíduos , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA