Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 15(1): 4444, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789421

RESUMO

Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Mitocôndrias , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Respiração Celular , Linhagem Celular Tumoral , Feminino , Ovalbumina/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia
2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659904

RESUMO

The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils is not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.

3.
Cell Death Dis ; 15(3): 198, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459020

RESUMO

Immune checkpoint inhibitors (ICIs) are now the first-line treatment for patients with advanced melanoma. Despite promising clinical results, many patients fail to respond to these therapies. BH3 mimetics, a novel class of small molecule inhibitors that bind and inhibit anti-apoptotic members of the BCL2 family proteins such as BCL2 or MCL1, have been very successful in treating hematologic malignancies. However, there are limited studies on the immunomodulatory role of the BH3 mimetics. Several factors contribute to ICI resistance including myeloid-derived suppressor cells (MDSCs) that exert immunosuppressive effects through direct and indirect inhibition of antitumor immunity. Thus, targeting MDSCs to enhance antitumor immunity has the potential to enhance the efficacy of ICIs. In this study, we show that the MCL1 inhibitor S64315 reduces melanoma tumor growth in an immune cell-dependent manner in mice. Specifically, S64315 enhances antitumor immunity by reducing MDSC frequency and by promoting the activity of CD8+T cells. Additionally, human MDSCs are 10 times more sensitive to S64315 than cutaneous melanoma lines. Further, we found that a higher expression of MCL1 is associated with poor survival for patients treated with anti-PD-1. Finally, combining S64315 and anti-PD-1 significantly slowed tumor growth compared to either agent alone. Together, this proof-of-concept study demonstrates the potential of combining an MCL1 inhibitor with anti-PD-1 in the treatment of melanoma. It justifies the further development of next generation MCL1 inhibitors to improve efficacy of ICIs in treating malignant melanoma.


Assuntos
Antineoplásicos , Melanoma , Células Supressoras Mieloides , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Células Supressoras Mieloides/metabolismo
4.
Am J Hum Genet ; 111(1): 11-23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181729

RESUMO

Precision medicine initiatives across the globe have led to a revolution of repositories linking large-scale genomic data with electronic health records, enabling genomic analyses across the entire phenome. Many of these initiatives focus solely on research insights, leading to limited direct benefit to patients. We describe the biobank at the Colorado Center for Personalized Medicine (CCPM Biobank) that was jointly developed by the University of Colorado Anschutz Medical Campus and UCHealth to serve as a unique, dual-purpose research and clinical resource accelerating personalized medicine. This living resource currently has more than 200,000 participants with ongoing recruitment. We highlight the clinical, laboratory, regulatory, and HIPAA-compliant informatics infrastructure along with our stakeholder engagement, consent, recontact, and participant engagement strategies. We characterize aspects of genetic and geographic diversity unique to the Rocky Mountain region, the primary catchment area for CCPM Biobank participants. We leverage linked health and demographic information of the CCPM Biobank participant population to demonstrate the utility of the CCPM Biobank to replicate complex trait associations in the first 33,674 genotyped individuals across multiple disease domains. Finally, we describe our current efforts toward return of clinical genetic test results, including high-impact pathogenic variants and pharmacogenetic information, and our broader goals as the CCPM Biobank continues to grow. Bringing clinical and research interests together fosters unique clinical and translational questions that can be addressed from the large EHR-linked CCPM Biobank resource within a HIPAA- and CLIA-certified environment.


Assuntos
Sistema de Aprendizagem em Saúde , Medicina de Precisão , Humanos , Bancos de Espécimes Biológicos , Colorado , Genômica
5.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38105962

RESUMO

The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.

6.
mBio ; : e0230623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905908

RESUMO

Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) and causes adverse pregnancy outcomes and invasive disease following vertical transmission to the fetus or newborn. Despite this major public health burden, the mechanisms of GBS FRT colonization are understudied. A recent transposon sequencing screen identified GBS factors contributing to vaginal colonization and ascending spread, including a putative DNA-cytosine methyltransferase (Dcm). We constructed a Δdcm deletion strain and confirmed that dcm contributes to murine FRT colonization. Investigation of the evolutionary origin of the dcm gene reveals that it is widely distributed across GBS and is encoded as part of a prophage genome that displays evidence of horizontal transfer between GBS strains. We further show that Dcm contributes to 5mC methylation and global regulation of genes involved in carbohydrate metabolism, transcription regulation, and known adhesins and metabolic factors involved in GBS colonization. Interestingly, GBS genes that are induced in the presence of the highly glycosylated vaginal mucin MUC5B were significantly downregulated in the ∆dcm mutant. Furthermore, the ∆dcm mutant exhibited reduced binding to immobilized mucin and was attenuated in its ability to grow on numerous carbon sources including the carbohydrates found on mucins. While the ∆dcm mutant displayed enhanced clearance from the FRT in wild-type mice, there was no significant difference in MUC5B -/- mice, indicating that Dcm-mediated regulation requires MUC5B to promote GBS colonization. This is the first report to characterize the impact of a DNA methyltransferase on GBS gene regulation and FRT colonization. IMPORTANCE Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) in one-third of women, and carriage leads to numerous adverse pregnancy outcomes including the preterm premature rupture of membranes, chorioamnionitis, and stillbirth. The presence of GBS in the FRT during pregnancy is also the largest predisposing factor for the transmission of GBS and invasive neonatal diseases, including pneumonia, sepsis, and meningitis. The factors contributing to GBS colonization are still being elucidated. Here, we show for the first time that GBS transcription is regulated by an orphan DNA cytosine methyltransferase (Dcm). Many GBS factors are regulated by Dcm, especially those involved in carbohydrate transport and metabolism. We show that GBS persistence in the FRT is dependent on the catabolism of sugars found on the vaginal mucin MUC5B. Collectively, this work highlights the regulatory importance of a DNA methyltransferase and identifies both host and bacterial factors required for GBS colonization.

7.
PLoS Pathog ; 19(8): e1011561, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639483

RESUMO

Epstein-Barr virus (EBV) and Plasmodium falciparum have a well described role in the development of endemic Burkitt lymphoma (BL), yet the mechanisms involved remain unknown. A major hallmark of malarial disease is hemolysis and bystander eryptosis of red blood cells, which causes release of free heme in large quantities into peripheral blood. We hypothesized that heme released during malaria infection drives differentiation of latently infected EBV-positive B cells, resulting in viral reactivation and release of infectious virus. To test this hypothesis, we used the EBV-positive Mutu I B-cell line and treated with hemin (the oxidized form of heme) and evaluated evidence of EBV reactivation. Hemin treatment resulted in the expression of EBV immediate early, early and late lytic gene transcripts. In addition, expression of CD138, a marker of plasma cells was co-expressed with the late lytic protein gp350 on hemin treated Mutu I cells. Finally, DNase-resistant EBV DNA indicative of virion production was detected in supernatant. To assess the transcriptional changes induced by hemin treatment, RNA sequencing was performed on mock- and hemin-treated Mutu I cells, and a shift from mature B cell transcripts to plasma cell transcripts was identified. To identify the mechanism of hemin-induced B cell differentiation, we measured levels of the plasma cell transcriptional repressor, BACH2, that contains specific heme binding sites. Hemin treatment caused significant degradation of BACH2 by 24 hours post-treatment in four BL cell lines (two EBV positive, two EBV negative). Knockdown of BACH2 in Mutu I cells using siRNAs significantly increased CD138+gp350+ cells to levels similar to treatment with hemin. This suggested that hemin induced BACH2 degradation was responsible for plasma cell differentiation and viral reactivation. Together, these data support a model where EBV reactivation can occur during malaria infection via heme modulation, providing a mechanistic link between malaria and EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Hemina , Humanos , Hemina/farmacologia , Herpesvirus Humano 4/genética , Heme , Diferenciação Celular , Fatores de Transcrição de Zíper de Leucina Básica/genética
8.
Cancer Discov ; 13(9): 2032-2049, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37358260

RESUMO

The BCL2 inhibitor venetoclax has recently emerged as an important component of acute myeloid leukemia (AML) therapy. Notably, use of this agent has revealed a previously unrecognized form of pathogenesis characterized by monocytic disease progression. We demonstrate that this form of disease arises from a fundamentally different type of leukemia stem cell (LSC), which we designate as monocytic LSC (m-LSC), that is developmentally and clinically distinct from the more well-described primitive LSC (p-LSC). The m-LSC is distinguished by a unique immunophenotype (CD34-, CD4+, CD11b-, CD14-, CD36-), unique transcriptional state, reliance on purine metabolism, and selective sensitivity to cladribine. Critically, in some instances, m-LSC and p-LSC subtypes can co-reside in the same patient with AML and simultaneously contribute to overall tumor biology. Thus, our findings demonstrate that LSC heterogeneity has direct clinical significance and highlight the need to distinguish and target m-LSCs as a means to improve clinical outcomes with venetoclax-based regimens. SIGNIFICANCE: These studies identify and characterize a new type of human acute myeloid LSC that is responsible for monocytic disease progression in patients with AML treated with venetoclax-based regimens. Our studies describe the phenotype, molecular properties, and drug sensitivities of this unique LSC subclass. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Leucemia Mieloide Aguda , Humanos , Antígenos CD34/metabolismo , Antígenos CD34/uso terapêutico , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/metabolismo , Progressão da Doença
9.
Semin Immunol ; 60: 101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36182863

RESUMO

Innate T (Tinn) cells are a collection of T cells with important regulatory functions that have a crucial role in immunity towards tumors, bacteria, viruses, and in cell-mediated autoimmunity. In mice, the two main αß Tinn cell subsets include the invariant NKT (iNKT) cells that recognize glycolipid antigens presented by non-polymorphic CD1d molecules and the mucosal associated invariant T (MAIT) cells that recognize vitamin B metabolites presented by the non-polymorphic MR1 molecules. Due to their ability to promptly secrete large quantities of cytokines either after T cell antigen receptor (TCR) activation or upon exposure to tissue- and antigen-presenting cell-derived cytokines, Tinn cells are thought to act as a bridge between the innate and adaptive immune systems and have the ability to shape the overall immune response. Their swift response reflects the early acquisition of helper effector programs during their development in the thymus, independently of pathogen exposure and prior to taking up residence in peripheral tissues. Several studies recently profiled, in an unbiased manner, the transcriptomes of mouse thymic iNKT and MAIT cells at the single cell level. Based on these data, we re-examine in this review how Tinn cells develop in the mouse thymus and undergo effector differentiation.


Assuntos
Células T Invariantes Associadas à Mucosa , Células T Matadoras Naturais , Camundongos , Humanos , Animais , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
10.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139558

RESUMO

Antigenic differences formed by alterations in gene expression and alternative splicing are predicted in breast cancer cells undergoing epithelial to mesenchymal transition (EMT) and the reverse plasticity known as MET. How these antigenic differences impact immune interactions and the degree to which they can be exploited to enhance immune responses against mesenchymal cells is not fully understood. We utilized a master microRNA regulator of EMT to alter mesenchymal-like EO771 mammary carcinoma cells to a more epithelial phenotype. A computational approach was used to identify neoantigens derived from the resultant differentially expressed somatic variants (SNV) and alternative splicing events (neojunctions). Using whole cell vaccines and peptide-based vaccines, we find superior cytotoxicity against the more-epithelial cells and explore the potential of neojunction-derived antigens to elicit T cell responses through experiments designed to validate the computationally predicted neoantigens. Overall, results identify EMT-associated splicing factors common to both mouse and human breast cancer cells as well as immunogenic SNV- and neojunction-derived neoantigens in mammary carcinoma cells.

11.
J Allergy Clin Immunol ; 149(5): 1807-1811.e16, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34780848

RESUMO

BACKGROUND: Integration of metabolomics with genetics may advance understanding of disease pathogenesis but has been underused in asthma genetic studies. OBJECTIVE: We sought to discover new genetic effects in asthma and to characterize the molecular consequences of asthma genetic risk through integration with the metabolome in a homogeneous population. METHODS: From fasting serum samples collected on 348 Tangier Island residents, we quantified 2612 compounds using untargeted metabolomics. Genotyping was performed using Illumina's MEGA array imputed to the TOPMed reference panel. To prioritize metabolites for genome-wide association analysis, we performed a metabolome-wide association study with asthma, selecting asthma-associated metabolites with heritability q value less than 0.01 for genome-wide association analysis. We also tested the association between all metabolites and 8451 candidate asthma single nucleotide polymorphisms previously associated with asthma in the UK Biobank. We followed up significant associations by characterizing shared genetic signal for metabolites and asthma using colocalization analysis. For detailed Methods, please see this article's Online Repository at www.jacionline.org. RESULTS: A total of 60 metabolites were associated with asthma (P < .01), including 40 heritable metabolites tested in genome-wide association analysis. We observed a strong association peak for the endocannabinoid linoleoyl ethanolamide on chromosome 6 in VNN1 (P < 2.7 × 10-9). We found strong evidence (colocalization posterior probability >75%) for a shared causal variant between 3 metabolites and asthma, including the polyamine acisoga and variants in LPP, and derivative leukotriene B4 and intergenic variants in chr10p14. CONCLUSIONS: We identified novel metabolite quantitative trait loci with asthma associations. Identification and characterization of these genetically driven metabolites may provide insight into the functional consequences of genetic risk factors for asthma.


Assuntos
Asma , Locos de Características Quantitativas , Asma/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
12.
Heliyon ; 7(4): e06878, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997407

RESUMO

Congenital Zika virus syndrome (CZS) is associated with damage to neural progenitor cells by ZIKA virus infection. There are no accurate statistics on the percentage of pregnant mothers who have had babies affected by the syndrome. Few cases of discordant twins have been described in the literature and, therefore, we hypothesize that the genetic background of the progeny and/or mother may play a role in the fate of the syndrome. We performed a complete exome sequencing in a set of dizygotic individuals and their parents. After that, we selected discordant variants on the MTOR gene between the affected and unaffected twin and we observed a mutation (rs2295079), placed in a region restricted to proximal 5'-UTR, as a strong possible causal variant. In addition, in most brain tissues (including fetal brain) evaluated for expression quantitative trait loci (eQTL), this locus is strongly correlated with post-translational modifications of histones (promoter and enhancer marks) and hypersensitivity to DNAse I (open chromatin mark). Taken together, our data suggest that changes in the MTOR gene may be related to CZS. Additional functional studies should be carried out to prove how and why a MTOR mutation can predispose the fetus to the syndrome.

13.
J Allergy Clin Immunol ; 148(6): 1493-1504, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33713768

RESUMO

BACKGROUND: Genetic ancestry plays a role in asthma health disparities. OBJECTIVE: Our aim was to evaluate the impact of ancestry on and identify genetic variants associated with asthma, total serum IgE level, and lung function. METHODS: A total of 436 Peruvian children (aged 9-19 years) with asthma and 291 without asthma were genotyped by using the Illumina Multi-Ethnic Global Array. Genome-wide proportions of indigenous ancestry populations from continental America (NAT) and European ancestry from the Iberian populations in Spain (IBS) were estimated by using ADMIXTURE. We assessed the relationship between ancestry and the phenotypes and performed a genome-wide association study. RESULTS: The mean ancestry proportions were 84.7% NAT (case patients, 84.2%; controls, 85.4%) and 15.3% IBS (15.8%; 14.6%). With adjustment for asthma, NAT was associated with higher total serum IgE levels (P < .001) and IBS was associated with lower total serum IgE levels (P < .001). NAT was associated with higher FEV1 percent predicted values (P < .001), whereas IBS was associated with lower FEV1 values in the controls but not in the case patients. The HLA-DR/DQ region on chromosome 6 (Chr6) was strongly associated with total serum IgE (rs3135348; P = 3.438 × 10-10) and was independent of an association with the haplotype HLA-DQA1∼HLA-DQB1:04.01∼04.02 (P = 1.55 × 10-05). For lung function, we identified a locus (rs4410198; P = 5.536 × 10-11) mapping to Chr19, near a cluster of zinc finger interacting genes that colocalizes to the long noncoding RNA CTD-2537I9.5. This novel locus was replicated in an independent sample of pediatric case patients with asthma with similar admixture from Brazil (P = .005). CONCLUSION: This study confirms the role of HLA in atopy, and identifies a novel locus mapping to a long noncoding RNA for lung function that may be specific to children with NAT.


Assuntos
Asma/genética , Genótipo , Imunoglobulina E/metabolismo , Povos Indígenas , Pulmão/metabolismo , Adolescente , América , Asma/epidemiologia , Criança , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/metabolismo , Humanos , Pulmão/imunologia , Masculino , Peru/epidemiologia , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Espanha , Adulto Jovem
14.
Nat Commun ; 11(1): 6238, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288744

RESUMO

Most T lymphocytes leave the thymus as naïve cells with limited functionality. However, unique populations of innate-like T cells differentiate into functionally distinct effector subsets during their development in the thymus. Here, we profiled >10,000 differentiating thymic invariant natural killer T (iNKT) cells using single-cell RNA sequencing to produce a comprehensive transcriptional landscape that highlights their maturation, function, and fate decisions at homeostasis. Our results reveal transcriptional profiles that are broadly shared between iNKT and mucosal-associated invariant T (MAIT) cells, illustrating a common core developmental program. We further unmask a mutual requirement for Hivep3, a zinc finger transcription factor and adapter protein. Hivep3 is expressed in early precursors and regulates the post-selection proliferative burst, differentiation and functions of iNKT cells. Altogether, our results highlight the common requirements for the development of innate-like T cells with a focus on how Hivep3 impacts the maturation of these lymphocytes.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Células T Matadoras Naturais/imunologia , Análise de Célula Única/métodos , Linfócitos T/imunologia , Timo/imunologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Imunidade Inata/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Invariantes Associadas à Mucosa/citologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Análise de Sequência de RNA/métodos , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/citologia , Timo/metabolismo
15.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916850

RESUMO

Squamous cell carcinoma (SCC) is the second commonest type of skin cancer, and SCCs make up about 90% of head and neck cancers (HNSCCs). HNSCCs harbor two frequent molecular alterations, namely, gain-of-function alterations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and loss-of-function mutations of tumor protein p53 (TP53). However, it remains poorly understood whether HNSCCs harboring different genetic alterations exhibit differential immune tumor microenvironments (TME). It also remains unknown whether PIK3CA hyperactivation and TP53 deletion can lead to SCC development spontaneously. Here, we analyzed the Cancer Genome Atlas (TCGA) datasets of HNSCCs and found that patients with both PIK3CA and TP53 alterations exhibited worse survival, significantly lower CD8 tumor infiltrating lymphocytes (TILs) and higher M0 macrophages than other controls. To better model human tumorigenesis, we deleted TP53 and constitutively activated PIK3CA in mouse keratin-15-expressing stem cells, which leads to the spontaneous development of multilineage tumors including SCCs, termed Keratin-15-p53-PIK3CA (KPPA) tumors. KPPA tumors were heavily infiltrated with myeloid-derived suppressor cells (MDSCs), with a drastically increased ratio of polymorphonuclear-MDSC (PMN-MDSC) versus monocytic-MDSC (M-MDSC). CD8 TILs expressed more PD-1 and reduced their polyfunctionality. Overall, we established a genetic model to mimic human HNSCC pathogenesis, manifested with an immunosuppressive TME, which may help further elucidate immune evasion mechanisms and develop more effective immunotherapies for HNSCCs.


Assuntos
Carcinoma de Células Escamosas/etiologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Genes p53 , Neoplasias de Cabeça e Pescoço/etiologia , Queratina-15/metabolismo , Animais , Carcinoma de Células Escamosas/mortalidade , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Linfócitos do Interstício Tumoral , Camundongos Transgênicos , Neoplasias Experimentais , Microambiente Tumoral
17.
Nat Commun ; 10(1): 880, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787307

RESUMO

Asthma is a complex disease with striking disparities across racial and ethnic groups. Despite its relatively high burden, representation of individuals of African ancestry in asthma genome-wide association studies (GWAS) has been inadequate, and true associations in these underrepresented minority groups have been inconclusive. We report the results of a genome-wide meta-analysis from the Consortium on Asthma among African Ancestry Populations (CAAPA; 7009 asthma cases, 7645 controls). We find strong evidence for association at four previously reported asthma loci whose discovery was driven largely by non-African populations, including the chromosome 17q12-q21 locus and the chr12q13 region, a novel (and not previously replicated) asthma locus recently identified by the Trans-National Asthma Genetic Consortium (TAGC). An additional seven loci reported by TAGC show marginal evidence for association in CAAPA. We also identify two novel loci (8p23 and 8q24) that may be specific to asthma risk in African ancestry populations.


Assuntos
Asma/genética , Negro ou Afro-Americano/genética , Predisposição Genética para Doença/genética , Asma/epidemiologia , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 8/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estados Unidos/epidemiologia
18.
Mol Cancer Res ; 17(1): 70-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171177

RESUMO

Patient-derived pancreatic ductal adenocarcinoma (PDAC) organoid systems show great promise for understanding the biological underpinnings of disease and advancing therapeutic precision medicine. Despite the increased use of organoids, the fidelity of molecular features, genetic heterogeneity, and drug response to the tumor of origin remain important unanswered questions limiting their utility. To address this gap in knowledge, primary tumor- and patient-derived xenograft (PDX)-derived organoids, and 2D cultures for in-depth genomic and histopathologic comparisons with the primary tumor were created. Histopathologic features and PDAC representative protein markers (e.g., claudin 4 and CA19-9) showed strong concordance. DNA- and RNA-sequencing (RNAseq) of single organoids revealed patient-specific genomic and transcriptomic consistency. Single-cell RNAseq demonstrated that organoids are primarily a clonal population. In drug response assays, organoids displayed patient-specific sensitivities. In addition, the in vivo PDX response to FOLFIRINOX and gemcitabine/abraxane treatments were examined, which was recapitulated in vitro with organoids. This study has demonstrated that organoids are potentially invaluable for precision medicine as well as preclinical drug treatment studies because they maintain distinct patient phenotypes and respond differently to drug combinations and dosage. IMPLICATIONS: The patient-specific molecular and histopathologic fidelity of organoids indicate that they can be used to understand the etiology of the patient's tumor and the differential response to therapies and suggests utility for predicting drug responses.


Assuntos
Adenocarcinoma/genética , Organoides/metabolismo , Neoplasias Pancreáticas/genética , Animais , Humanos , Camundongos
19.
Science ; 362(6420)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545857

RESUMO

Despite progress in defining genetic risk for psychiatric disorders, their molecular mechanisms remain elusive. Addressing this, the PsychENCODE Consortium has generated a comprehensive online resource for the adult brain across 1866 individuals. The PsychENCODE resource contains ~79,000 brain-active enhancers, sets of Hi-C linkages, and topologically associating domains; single-cell expression profiles for many cell types; expression quantitative-trait loci (QTLs); and further QTLs associated with chromatin, splicing, and cell-type proportions. Integration shows that varying cell-type proportions largely account for the cross-population variation in expression (with >88% reconstruction accuracy). It also allows building of a gene regulatory network, linking genome-wide association study variants to genes (e.g., 321 for schizophrenia). We embed this network into an interpretable deep-learning model, which improves disease prediction by ~6-fold versus polygenic risk scores and identifies key genes and pathways in psychiatric disorders.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Transtornos Mentais/genética , Conjuntos de Dados como Assunto , Aprendizado Profundo , Elementos Facilitadores Genéticos , Epigênese Genética , Epigenômica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Locos de Características Quantitativas , Análise de Célula Única , Transcriptoma
20.
Sci Transl Med ; 10(472)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30545964

RESUMO

Schizophrenia and bipolar disorder are complex psychiatric diseases with risks contributed by multiple genes. Dysregulation of gene expression has been implicated in these disorders, but little is known about such dysregulation in the human brain. We analyzed three transcriptome datasets from 394 postmortem brain tissue samples from patients with schizophrenia or bipolar disorder or from healthy control individuals without a known history of psychiatric disease. We built genome-wide coexpression networks that included microRNAs (miRNAs). We identified a coexpression network module that was differentially expressed in the brain tissue from patients compared to healthy control individuals. This module contained genes that were principally involved in glial and neural cell genesis and glial cell differentiation, and included schizophrenia risk genes carrying rare variants. This module included five miRNAs and 545 mRNAs, with six transcription factors serving as hub genes in this module. We found that the most connected transcription factor gene POU3F2, also identified on a genome-wide association study for bipolar disorder, could regulate the miRNA hsa-miR-320e and other putative target mRNAs. These regulatory relationships were replicated using PsychENCODE/BrainGVEX datasets and validated by knockdown and overexpression experiments in SH-SY5Y cells and human neural progenitor cells in vitro. Thus, we identified a brain gene expression module that was enriched for rare coding variants in genes associated with schizophrenia and that contained the putative bipolar disorder risk gene POU3F2 The transcription factor POU3F2 may be a key regulator of gene expression in this disease-associated gene coexpression module.


Assuntos
Encéfalo/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Transtornos Mentais/genética , Fatores do Domínio POU/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Neurais/metabolismo , Fatores do Domínio POU/genética , Mudanças Depois da Morte , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA