Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0266456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358281

RESUMO

The world health organization estimates that more than a quarter of the human population is infected with parasitic worms that are called helminths. Many helminths suppress the immune system of their hosts to prolong their survival. This helminth-induced immunosuppression "spills over" to unrelated antigens and can suppress the immune response to vaccination against other pathogens. Indeed, several human studies have reported a negative correlation between helminth infections and responses to vaccinations. Using mice that are infected with the parasitic nematode Litomosoides sigmodontis as a model for chronic human filarial infections, we reported previously that concurrent helminth infection impaired the vaccination-induced protection against the human pathogenic 2009 pandemic H1N1 influenza A virus (2009 pH1N1). Vaccinated, helminth-infected mice produced less neutralizing, influenza-specific antibodies than vaccinated naïve control mice. Consequently helminth-infected and vaccinated mice were not protected against a challenge infection with influenza virus but displayed high virus burden in the lung and a transient weight loss. In the current study we tried to improve the vaccination efficacy using vaccines that are licensed for humans. We either introduced a prime-boost vaccination regimen using the non-adjuvanted anti-influenza vaccine Begripal or employed the adjuvanted influenza vaccine Fluad. Although both strategies elevated the production of influenza-specific antibodies and protected mice from the transient weight loss that is caused by an influenza challenge infection, sterile immunity was not achieved. Helminth-infected vaccinated mice still had high virus burden in the lung while non-helminth-infected vaccinated mice rapidly cleared the virus. In summary we demonstrate that basic improvements of influenza vaccination regimen are not sufficient to confer sterile immunity on the background of helminth-induced immunosuppression, despite amelioration of pathology i.e. weight loss. Our findings highlight the risk of failed vaccinations in helminth-endemic areas, especially in light of the ongoing vaccination campaign to control the COVID-19 pandemic.


Assuntos
COVID-19 , Helmintíase , Helmintos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Humanos , Influenza Humana/complicações , Influenza Humana/prevenção & controle , Camundongos , Pandemias , Vacinação , Redução de Peso
2.
Sci Rep ; 11(1): 1536, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452272

RESUMO

Helminths are large multicellular parasites that infect one quarter of the human population. To prolong their survival, helminths suppress the immune responses of their hosts. Strongyloides ratti delays its expulsion from the gut by induction of regulatory circuits in a mouse strain-specific manner: depletion of Foxp3+ regulatory T cells (Treg) improves the anti-S. ratti immunity in BALB/c but not in C57BL/6 mice. In the current study we compare the hierarchy of immunoregulatory pathways in BALB/c, C57BL/6 mice and their F1 progeny (BALB/c × C57BL/6). Using multicolor flow cytometry, we show that S. ratti induces a distinct pattern of inhibitory checkpoint receptors by Foxp3+ Treg and Foxp3- T cells. Intensity of expression was highest in C57BL/6 and lowest in BALB/c mice, while the F1 cross had an intermediate phenotype or resembled BALB/c mice. Treg subsets expanded during infection in all three mouse strains. Similar to BALB/c mice, depletion of Treg reduced intestinal parasite burden and increased mucosal mast cell activation in S. ratti-infected F1 mice. Our data indicate that Treg dominate the regulation of immune responses in BALB/c and F1 mice, while multiple regulatory layers exist in C57BL/6 mice that may compensate for the absence of Treg.


Assuntos
Estrongiloidíase/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Citometria de Fluxo/métodos , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Imunidade , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Strongyloides ratti/patogenicidade , Estrongiloidíase/parasitologia , Estrongiloidíase/veterinária , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia
3.
Front Immunol ; 12: 784141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992602

RESUMO

Helminths still infect a quarter of the human population. They manage to establish chronic infections by downmodulating the immune system of their hosts. Consequently, the immune response of helminth-infected individuals to vaccinations may be impaired as well. Here we study the impact of helminth-induced immunomodulation on vaccination efficacy in the mouse system. We have previously shown that an underlying Litomosoides sigmodontis infection reduced the antibody (Ab) response to anti-influenza vaccination in the context of a systemic expansion of type 1 regulatory T cells (Tr1). Most important, vaccine-induced protection from a challenge infection with the 2009 pandemic H1N1 influenza A virus (2009 pH1N1) was impaired in vaccinated, L. sigmodontis-infected mice. Here, we aim at the restoration of vaccination efficacy by drug-induced deworming. Treatment of mice with Flubendazole (FBZ) resulted in elimination of viable L. sigmodontis parasites in the thoracic cavity after two weeks. Simultaneous FBZ-treatment and vaccination did not restore Ab responses or protection in L. sigmodontis-infected mice. Likewise, FBZ-treatment two weeks prior to vaccination did not significantly elevate the influenza-specific Ig response and did not protect mice from a challenge infection with 2009 pH1N1. Analysis of the regulatory T cell compartment revealed that L. sigmodontis-infected and FBZ-treated mice still displayed expanded Tr1 cell populations that may contribute to the sustained suppression of vaccination responses in successfully dewormed mice. To outcompete this sustained immunomodulation in formerly helminth-infected mice, we finally combined the drug-induced deworming with an improved vaccination regimen. Two injections with the non-adjuvanted anti-influenza vaccine Begripal conferred 60% protection while MF59-adjuvanted Fluad conferred 100% protection from a 2009 pH1N1 infection in FBZ-treated, formerly L. sigmodontis-infected mice. Of note, applying this improved prime-boost regimen did not restore protection in untreated L. sigmodontis-infected mice. In summary our findings highlight the risk of failed vaccinations due to helminth infection.


Assuntos
Antinematódeos/administração & dosagem , Coinfecção/terapia , Filariose/terapia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/terapia , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Coinfecção/virologia , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Filariose/parasitologia , Filariose/virologia , Filarioidea/imunologia , Humanos , Imunização Secundária , Imunomodulação , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/parasitologia , Influenza Humana/virologia , Mebendazol/administração & dosagem , Mebendazol/análogos & derivados , Camundongos , Ácaros/parasitologia , Sigmodontinae/parasitologia , Vacinação/métodos
4.
Cell Rep ; 29(8): 2243-2256.e4, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747598

RESUMO

Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Here, we analyze the impact of helminth infections on the efficacy of vaccinations using Litomosoides sigmodontis-infected mice. Concurrent helminth infection reduces the quantity and quality of antibody responses to vaccination against seasonal influenza. Vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus is drastically impaired in helminth-infected mice. Impaired responses are also observed if vaccinations are performed after clearance of a previous helminth infection, suggesting that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection. Mechanistically, the suppression is associated with a systemic and sustained expansion of interleukin (IL)-10-producing CD4+CD49+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Helmintos/imunologia , Helmintos/patogenicidade , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/prevenção & controle , Linfócitos T/metabolismo , Vacinação/métodos , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/fisiologia , Fatores de Transcrição Forkhead/genética , Humanos , Imunomodulação/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Interleucina-10/metabolismo , Camundongos , Estações do Ano
5.
PLoS Negl Trop Dis ; 12(11): e0006992, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496188

RESUMO

Infections with helminth parasites are controlled by a concerted action of innate and adaptive effector cells in the frame of a type 2 immune response. Basophils are innate effector cells that may also contribute to the initiation and amplification of adaptive immune responses. Here, we use constitutively basophil-deficient Mcpt8-Cre mice to analyze the impact of basophils during initiation and execution of the protective type 2 responses to both, a primary infection and a challenge infection of immune mice with the helminth parasite Strongyloides ratti. Basophil numbers expanded during parasite infection in blood and mesenteric lymph nodes. Basophil deficiency significantly elevated intestinal parasite numbers and fecal release of eggs and larvae during a primary infection. However, basophils were neither required for the initiation of a S. ratti-specific cellular and humoral type 2 immune response nor for the efficient protection against a challenge infection. Production of Th2 cytokines, IgG1 and IgE as well as mast cell activation were not reduced in basophil-deficient Mcpt8-Cre mice compared to basophil-competent Mcpt8-WT littermates. In addition, a challenge infection of immune basophil-deficient and WT mice resulted in a comparable reduction of tissue migrating larvae, parasites in the intestine and fecal release of eggs and L1 compared to mice infected for the first time. We have shown previously that S. ratti infection induced expansion of Foxp3+ regulatory T cells that interfered with efficient parasite expulsion. Here we show that depletion of regulatory T cells reduced intestinal parasite burden also in absence of basophils. Thus basophils were not targeted specifically by S. ratti-mediated immune evasive mechanisms. Our collective data rather suggests that basophils are non-redundant innate effector cells during murine Strongyloides infections that contribute to the early control of intestinal parasite burden.


Assuntos
Imunidade Adaptativa , Basófilos/imunologia , Enteropatias Parasitárias/imunologia , Strongyloides ratti/fisiologia , Estrongiloidíase/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Citocinas/imunologia , Feminino , Humanos , Imunidade Humoral , Imunoglobulina E/imunologia , Enteropatias Parasitárias/parasitologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Strongyloides ratti/genética , Estrongiloidíase/parasitologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Triptases/genética , Triptases/imunologia
6.
Sci Rep ; 8(1): 8636, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872093

RESUMO

IL-9 is a cytokine with pleiotropic function that mediates allergic inflammation and immunity to intestinal helminth parasites. Accumulating evidence suggests that IL-9 acts via both, initiation and regulation of adaptive immune responses and direct activation of intestinal effector pathways. Here we use IL-9 receptor deficient mice on BALB/c and C57BL/6 genetic background to dissect effector and regulatory functions of IL-9 during infection with the parasitic nematode Strongyloides ratti. IL-9 receptor-deficient mice displayed increased intestinal parasite burden and prolonged infection irrespective of the genetic background of the mice. Increased parasite burden was correlated to a reciprocally reduced early degranulation of mucosal mast cells, reduced intestinal IL-13 expression and caused by IL-9 receptor deficiency on hematopoietic cells. We observed additional significant changes in the adaptive immune response to S. ratti infection in the absence of the IL-9 receptor that depended on the mouse strain. However, the generation of protective memory to a second infection was intact in IL-9 receptor-deficient mice, irrespective of the genetic background. In summary, our results support a central role for IL-9 as an early mast cell activating effector cytokine during intestinal helminth infection while non-redundant functions in the initiation and amplification of adaptive immune responses were not apparent.


Assuntos
Interleucina-9/metabolismo , Mastócitos/imunologia , Strongyloides ratti/imunologia , Estrongiloidíase/imunologia , Animais , Modelos Animais de Doenças , Fatores Imunológicos/metabolismo , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-9/deficiência
7.
Artigo em Inglês | MEDLINE | ID: mdl-28676845

RESUMO

Infections by the soil-transmitted threadworm Strongyloides stercoralis affect 30-100 million people worldwide, predominantly in tropic and sub-tropic regions. Here we assessed the T helper cell phenotypes in threadworm-infected patients and experimental murine infections with focus on CD4+ T cells co-expressing markers of Th2 and Th1 differentiation. We show that mice infected with the close relative S. ratti generate strong Th2 responses characterized by the expansion of CD4+ GATA-3+ cells expressing IL-4/-5/-13 in blood, spleen, gut-draining lymph nodes, lung and gut tissue. In addition to conventional Th2 cells, significantly increased frequencies of GATA-3+T-bet+ Th2/1-hybrid cells were detected in all organs and co-expressed Th2- and Th1-cytokines at intermediate levels. Assessing the phenotype of blood-derived CD4+ T cells from South Indian patients infected with S. stercoralis and local uninfected control donors we found that GATA-3 expressing Th2 cells were significantly increased in the patient cohort, coinciding with elevated eosinophil and IgE/IgG4 levels. A fraction of IL-4+CD4+ T cells simultaneously expressed IFN-γ hence displaying a Th2/1 hybrid phenotype. In accordance with murine Th2/1 cells, human Th2/1 cells expressed intermediate levels of Th2 cytokines. Contrasting their murine counterparts, human Th2/1 hybrids were marked by high levels of IFN-γ and rather low GATA-3 expression. Assessing the effector function of murine Th2/1 cells in vitro we found that Th2/1 cells were qualified for driving the classical activation of macrophages. Furthermore, Th2/1 cells shared innate, cytokine-driven effector functions with Th1 cells. Hence, the key findings of our study are that T helper cells with combined characteristics of Th2 and Th1 cells are integral to immune responses of helminth-infected mice, but also occur in helminth-infected humans and we suggest that Th2/1 cells are poised for the instruction of balanced immune responses during nematode infections.


Assuntos
Células Híbridas/imunologia , Strongyloides ratti/patogenicidade , Estrongiloidíase/imunologia , Células Th1/imunologia , Células Th2/imunologia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/sangue , Feminino , Fator de Transcrição GATA3/metabolismo , Humanos , Células Híbridas/metabolismo , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Índia , Interferon gama , Interleucina-13/sangue , Interleucina-4/sangue , Interleucina-5/sangue , Intestino Delgado/patologia , Pulmão/patologia , Linfonodos/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Baço/patologia , Strongyloides ratti/genética , Estrongiloidíase/patologia , Células Th1/metabolismo , Células Th2/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA