RESUMO
Joint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy. Therefore, there is an urgent need to develop improved strategies for drug delivery, in particular, the use of micro- and nanotechnology-based methods. Encapsulation of therapeutic agents in delivery systems reduces drug efflux from the joint and protects against rapid cellular and enzymatic clearance following intra-articular injection. Consequently, the use of drug delivery systems decreases side effects and increases therapeutic efficacy due to enhanced drug retention in the intra-articular space. Additionally, the frequency of intra-articular administration is reduced, as delivery systems enable sustained drug release. This review summarizes various advanced drug delivery systems, such as nano- and microcarriers, developed for articular cartilage diseases.
Assuntos
Artrite Reumatoide , Cartilagem Articular , Osteoartrite , Humanos , Sistemas de Liberação de Medicamentos , Osteoartrite/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológicoRESUMO
The topical administration of a drug compound remains the first choice for the treatment of many local skin ailments. Many skin diseases can be treated by applying the active formulation directly to the skin, but unfortunately some drugs are unable to overcome the stratum corneum and exert their pharmacological action. An example is thymoquinone, a naturally derived drug obtained from Nigella sativa L. and potentially effective in the treatment of inflammatory and oxidative skin conditions. Since its physico-chemical properties are not suitable for overcoming the stratum corneum, we wanted to circumvent the problem by proposing new lipid-based nanovesicles called "oleoethosomes", made up of naturally derived ingredients, for its delivery. Among several formulations of oleoethosomes, the sample made up of 2% (w/w) oleic acid:PL90G 1:1 (molar ratio), and ethanol 15% showed the best physico-chemical characteristics and above all it showed the capacity to contain a suitable amount of thymoquinone (2 mg/ml). The formulation was tested in vitro on stratum corneum and viable epidermis membranes confirming its ability to induce the passage of thymoquinone through the human stratum corneum and to act as a permeation enhancer. In fact, it showed thymoquinone permeation values of 22.63 ± 1.49% regarding the applied drug amount. Oleoethosomes were compared with oleosomes, another kind of naturally derived nanosystems but free of ethanol. The experimental data confirmed that ethanol was an important component that enhanced the activity of the oleoethosomes when tested on the skin of healthy volunteers. The thymoquinone-loaded oleoethosome treatment demonstrated a significantly greater extent of anti-inflammatory activity than the treatment with thymoquinone-loaded oleosomes or the conventional dosage form of the drug. These in vivo results confirmed the synergic effect between oleic acid and ethanol on the lipid and protein compartments of the outermost skin layer, thus promoting a greater penetration capacity.
Assuntos
Ácido Oleico , Dermatopatias , Humanos , Administração Cutânea , Preparações Farmacêuticas/metabolismo , Pele/metabolismo , Anti-Inflamatórios , Administração Tópica , Dermatopatias/metabolismo , EtanolRESUMO
The use of proper nanocarriers for dermal and transdermal delivery of anti-inflammatory drugs recently gained several attentions in the scientific community because they pass intact and accumulate payloads in the deepest layers of skin tissue. Ascorbyl palmitate-based vesicles (aspasomes) can be considered a promising nanocarrier for dermal and transdermal delivery due to their skin whitening properties and suitable delivery of payloads through the skin. The aim of this study was the synthesis of multidrug Idebenone/naproxen co-loaded aspasomes for the development of an effective anti-inflammatory nanomedicine. Aspasomes had suitable physicochemical properties and were safe inâ vivo if topically applied on human healthy volunteers. Idebenone/naproxen co-loaded aspasomes demonstrated an increased therapeutic efficacy of payloads compared to the commercially available Naprosyn® gel, with a rapid decrease of chemical-induced erythema on human volunteers. These promising results strongly suggested a potential application of Idebenone/naproxen multidrug aspasomes for the development of an effective skin anti-inflammatory therapy.
Assuntos
Naproxeno , Absorção Cutânea , Administração Cutânea , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Naproxeno/metabolismo , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Pele/metabolismo , Ubiquinona/análogos & derivadosRESUMO
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.