RESUMO
The current well-established chromatography and mass spectrometry based oil spill identification procedures, such as those outlined by the European Committee for Standardization, are highly reliable as methods, highly defensible in the court of law, and widely applicable to the majority of oil spill situations. Nevertheless, the methodology is time consuming and labour intensive, which may not be ideal when dealing with an emergency oil spill situation. In this study, direct analysis in real time time-of-flight mass spectrometry (DART/TOFMS) was used to successfully develop an efficient oil identification method. To confirm the accuracy of this method spilled oil samples were tested from five previous years of blind round robin testing organized by the oil spill identification network of experts (OSINET) under the Bonn Agreement. Heatmap inspection, principal component analysis and finally discriminant analysis of principal components were used to arrive at final predictions regarding the identities of the spilled oil samples. The results were compared with the results of previous gas chromatography flame ionization detection (GC/FID) and gas chromatography triple quadrupole mass spectrometry (GC/MS/MS) analyses of the same oils. While taking only about a tenth of the time, the DART/TOFMS analysis produced results similar to those of classical GC/FID and GC/MS/MS (EI+) procedures. The ability of DART/TOFMS to display this level of validity exemplifies its potential to be a new tool for supplementing classical analyses for oil spill forensics.
Assuntos
Óleos , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ionização de Chama/métodos , Medicina LegalRESUMO
The critical importance of mono- and polyunsaturated fatty acids (FAs) in a variety of biological functions, including animal nutrition and as an environmental stress monitor, is well recognized. However, while methods exist for monitoring of fatty acids, few are specific either to the profile of a microphytobenthos matrix or practical in application to multiple, diverse intertidal biofilm sample sets. In the current study, a sensitive liquid chromatography (LC) quadrupole time of flight mass spectrometry (QTOF) method was developed for the quantitative analysis of 31 FAs specific to intertidal biofilm, a thin mucilaginous layer of microalgae, bacteria, and other organisms on the surface of coastal mudflats, which provide a rich source of FAs for migratory birds. Preliminary screening of diverse biofilm samples collected from shorebird feeding grounds highlighted eight saturated (SFA), seven monounsaturated (MUFA), and sixteen polyunsaturated FAs (PUFA) that were selected for analysis. Improved method detection limits in the range 0.3-2.6 ngmL-1 were achieved, excepting for stearic acid at 10.6 ngmL-1. These excellent results were obtained without use of complex sample extraction and clean-up procedures undertaken by other published methods. An alkaline matrix of dilute aqueous ammonium hydroxide with methanol was shown to be selective for extraction and stability of the more hydrophilic fatty acid components. The direct injection method showed excellent precision and accuracy both during validation and application to hundreds of real-world intertidal biofilm samples from the Fraser River estuary (British Columbia, Canada) and other areas of the region frequented by shoreline birds.
Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Animais , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Espectrometria de Massas/métodos , Metanol , Cromatografia Líquida/métodosRESUMO
Current oil spill forensic identification of source oils relies upon hydrocarbon biomarkers resistant to weathering. This international technique was developed by the European Committee for Standardization (CEN), under EN 15522-2 Oil Spill Identification guidelines. The number of biomarkers have expanded at pace with technological advances, while distinguishing new biomarkers becomes more challenging due to interference of isobaric compounds, matrix effects, and high cost of weathering experiments. Application of high-resolution mass spectrometry enabled exploration of potential polycyclic aromatic nitrogen heterocycle (PANH) oil biomarkers. The instrumentation showed reduction in isobaric and matrix interferences, allowing for identification of low-level PANH and alkylated PANHs (APANHs). Weathered oil samples, obtained from a marine microcosm weathering experiment, enabled comparison with source oils to identify new, stable forensic biomarkers. This study highlighted eight new APANH diagnostic ratios that expanded the biomarker suite, increasing the confidence for identifying highly weathered oils back to their source oil.
Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Nitrogênio/análise , Monitoramento Ambiental/métodos , Óleos , Hidrocarbonetos/análise , Poluição por Petróleo/análise , Biomarcadores , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análiseRESUMO
In current oil spill forensics, diagnostic ratios of hydrocarbon biomarker responses are commonly used to compare oil spill samples to source materials in order to determine the identity of the oil. This well recognized procedure was developed by the European Committee for Standardization (CEN) with corresponding published EN 15522-2 Oil Spill Identification guidelines. However, it is further recognized that weathering can have a negative effect on some of the biomarkers used in the analysis, leading to decreased confidence in the result. In this study, polycyclic aromatic sulfur heterocycles (PASHs) and their alkylated forms (APASHs) were assessed for their potential as additional biomarkers. With the aim of identifying stable PASHs and APASHs useful as weathered oil biomarkers, the superior specificity of gas chromatography with high resolution mass spectrometry was exploited to determine chromatographic peak responses for sixteen petroleum oil samples. Extensive study, involving microcosm extreme weathering and spreadsheet development, led to the identification of 19 new diagnostic ratios based on newly discovered stable PASH and APASH biomarkers. Application of the extended diagnostic ratio suite showed high potential to improve the forensic attribution of post-spill weathered oil back to its original source.
Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/análise , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , EnxofreRESUMO
Spilled crude oil samples contain various toxic compounds including polycyclic aromatic hydrocarbons (PAHs) as well as sulfur heterocycles (PASHs) and their related alkylated forms (APAHs and APASHs). In this study, a method was successfully developed employing a gas chromatography quadrupole time-of-flight (GC-QToF) mass spectrometer to quantitatively analyze both PAHs/APAHs and PASHs/APASHs in these samples. With GC-QToF, the monoisotopic mass of the compounds is distinguished, allowing the PASHs/APASHs to be extracted separately from the PAHs/APAHs in crude oil. A gas chromatography triple quadrupole (GC-MS/MS) mass spectrometer was also used to confirm that a GC-QToF is the preferred instrument for analyzing these compounds. With the use of PASH/APASH standards to determine response correction factors (RCFs) in relation to PAH standards, the developed method is capable of analyzing PAHs, APAHs, PASHs, and APASHs in a single injection. The use of RCFs allowed for the development of a practical polycyclic aromatic carbon (PAC) method for analyzing a total of 77 compounds of the 2 groups in crude oil. This newly developed method was applied to spilled crude oils, demonstrating its potential in toxicological study as well as oil spill forensic investigation.
Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Enxofre , Espectrometria de Massas em TandemRESUMO
A rapid and sensitive liquid chromatography (LC) quadrupole time of flight (QTOF) method has been developed for the determination of resin acid concentrations in aqueous pulp and paper effluent related samples. Calibration R2 of ≥0.995 for twelve resin acids, namely dehydroabietic, 8(14)-abietenic, dihydroisopimaric, levopimaric, neoabietic, pimaric, sandaracopimaric, abietic, isopimaric, palustric, chlorodehydroabietic, and dichlorodehydroabietic acids, was demonstrated in the range 1 µgL-1 to 40 µgL-1. An improved lower limit of quantitation was achieved without use of complex sample extraction and clean-up procedures undertaken by other published methods. Excellent precision and accuracy results were achieved for dehydroabietic, chlorodehydroabietic, dichlorodehydroabietic, isopimaric (integrated inclusive of all C20H30O2 resin acids), dihydroisopimaric and 8(14)-abietenic resin acids, with t-99 percentile detection limits spanning the range 0.05 to 0.07 µgL-1. While measurement for the C20H30O2 resin acids by isopimaric equivalence is considered semi-quantitative and could be an under estimate for the abietic acid component, the developed method demonstrated clear advantage over time consuming, hazardous, and unstable derivatization procedures used for gas chromatography and capillary electrophoresis. The developed LC/QToF method was successfully transferred to an LC triple quadrupole mass spectrometer for routine high throughput trace level analysis. Real world samples, including sea water and estuary water, demonstrated excellent spike recoveries by this procedure, indicating that the method is well suited to the monitoring of industrially derived resin acids in environmental surface waters. While no interferences were observed during routine sample analysis using myristic-1-13C acid and palmitic-1-13C acid internal standards, these were later substituted by myristic-d27 and palmitic-d31 acid in order to improve method robustness for environmental samples where endogenous parent fatty acids could be present.
Assuntos
Ácidos , Resinas Vegetais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de MassasRESUMO
Artificially weathered crude oil "spill" samples were matched to unweathered suspect "source" oils through a three-tiered approach as follows: Tier 1 gas chromatography-flame ionization detection (GC/FID), Tier 2 gas chromatography-mass spectrometry (GC/MS) diagnostic ratios, and Tier 3 multivariate statistics. This study served as proof of concept for a promising and new method of crude oil forensics that applies principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA) in tandem with traditional forensic oil fingerprinting tools to confer additional confidence in challenging oil spill cases. In this study, weathering resulted in physical and chemical changes to the spilled oils, thereby decreasing the reliability of GC/FID and GC/MS diagnostic ratios in source attribution. The shortcomings of these traditional methods were overcome by applying multivariate statistical tools that enabled accurate characterization of the crude oil spill samples in an efficient and defensible manner.
Assuntos
Cromatografia Gasosa , Ionização de Chama , Ciências Forenses/métodos , Cromatografia Gasosa-Espectrometria de Massas , Poluição por Petróleo/análise , Petróleo/análise , Análise Multivariada , Análise de Componente Principal , Reprodutibilidade dos TestesRESUMO
Frequent small-scale environmental releases of lubricating (lube) oils have deleterious effects on aquatic ecosystems. In the event of a spill, oil fingerprinting is critical to source attribution, clean-up procedures, and liability assignment. Oil forensic investigations are particularly challenging when oils are weathered over an extended period of time, as a large number of biomarkers become lost and the chemical composition changes significantly from its source. This study simulated an environmental case in which long-term weathered lube oil "spill" samples were matched to unweathered suspect "source" oils. While traditional oil fingerprinting techniques including GC/FID and GC/MS diagnostic ratios were insufficient for reliably attributing the source, a comprehensive and systematically tiered approach proved successful. The proposed methodology featured three tiers: Tier 1 GC/FID, Tier 2 GC/MS diagnostic ratios, and Tier 3 multivariate statistics. This novel approach provided environmental chemists with a powerful tool for dealing with an otherwise extremely challenging lube oil forensic investigation.
RESUMO
Observations made for the analysis of the oil spill dispersant tracer dioctyl sulfosuccinate (DOSS) during LC50 toxicity testing, highlighted a stability issue for this tracer compound in seawater. A liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (LC/QToF) was used to confirm monooctyl sulfosuccinate (MOSS) as the only significant DOSS breakdown product, and not the related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate. Combined analysis of DOSS and MOSS was shown to be applicable to monitoring of spill dispersants Corexit® EC9500A, Finasol OSR52, Slickgone NS, and Slickgone EW. The unassisted conversion of DOSS to MOSS occurred in all four oil spill dispersants solubilized in seawater, although differences were noted in the rate of MOSS formation. A marine microcosm study of Corexit EC9500A, the formulation most rapid to form MOSS, provided further evidence of the stoichiometric conversion of DOSS to MOSS under conditions relevant to real world dilbit spill. Results supported combined DOSS and MOSS analysis for the monitoring of spill dispersant in a marine environment, with a significant extension of sample collection time by 10 days or longer in cooler conditions. Implications of the unassisted formation of MOSS and combined DOSS:MOSS analysis are discussed in relation to improving dispersant LC50 toxicity studies.
Assuntos
Ácido Dioctil Sulfossuccínico/toxicidade , Monitoramento Ambiental/métodos , Hidrocarbonetos/toxicidade , Lipídeos/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Líquida , Ácido Dioctil Sulfossuccínico/análise , Hidrocarbonetos/análise , Dose Letal Mediana , Lipídeos/análise , Microbiota/efeitos dos fármacos , Compostos Orgânicos/análise , Compostos Orgânicos/toxicidade , Petróleo/análise , Poluição por Petróleo/análise , Salmão/crescimento & desenvolvimento , Água do Mar/química , Água do Mar/microbiologia , Succinatos/análise , Succinatos/toxicidade , Tensoativos/análise , Testes de Toxicidade , Poluentes Químicos da Água/análiseRESUMO
The international trade in illegally logged and environmentally endangered timber has spurred enforcement agencies to seek additional technical procedures for the identification of wood species. All Dalbergia species are listed under the Convention on International Trade in Endangered Species (CITES) which is the reason this genus was chosen for study. Multiple sources of the heartwood from different Dalbergia species were extracted and chromatographic profiles collected by gas chromatography with high resolution quadrupole Time of Flight mass spectrometry (GC/QToF). The collected data was mined to select peaks and mass ions representative of the investigated Dalbergia species, and used to develop a Microsoft Excel® template offering immediate graphical representation of the results. Using wood specimens sourced from different xylaria, this graphical fingerprint proved adept at definitive identification of Dalbergia species. The CITES Appendix I species, D. nigra, was easily distinguished from D. melanoxylon and look-alike species of other genera. Similarly, a number of other Dalbergia species were differentiated using this current approach. Kernel discrimination analysis (KDA) was applied to increase the confidence of the species identification. The mislabeling of specimens appears to be common, and the emerging technique of GC/QToF in combination with other techniques, offers improved confidence in identification. GC/QToF further provides automation, the dimension of chromatography to avoid interferences, and production of reproducible electron impact positive (EI+) spectra. The prospect of building an EI+ spectral database for future wood identification is an important feature considering the limited accessibility of authenticated wood species specimens.
Assuntos
Botânica/métodos , Comércio/ética , Comércio/métodos , Dalbergia/química , Dalbergia/classificação , Cromatografia Gasosa-Espectrometria de Massas , Madeira/química , Análise Discriminante , Espécies em Perigo de Extinção , Internacionalidade , Íons/análiseRESUMO
A diagnostic ratio forensics tool, similar to that recognized internationally for oil spill source identification, is proposed for use in conjunction with existing LC/QToF quantitative methodology for bitumen-derived water-soluble organics (WSOs). The concept recognizes that bitumen WSOs bear a chemical skeletal relationship to stearane and hopane oil biomarkers. The method uses response ratios for 50 selected WSOs compared between samples by their relative percent difference and adopted acceptance criteria. Oil sands process-affected water (OSPW) samples from different locations within a single tailings pond were shown to match, while those from different industrial sites did not. Acid extractable organic samples collected over 3 weeks from the same location within a single tailings pond matched with each other; as did temporal OSPW samples a year apart. Blind quality assurance samples of OSPW diluted in surface waters were positively identified to their corresponding OSPW source. No interferences were observed from surface waters, and there was no match between bitumen-influenced groundwater and OSPW samples, as expected for different sources. Proof of concept for OSPW source identification using diagnostic ratios was demonstrated, with anticipated application in the tracking of OSPW plumes in surface receiving waters, together with the potential for confirmation of source.
Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Ácidos Carboxílicos , AreiaRESUMO
A high resolution mass spectrometry method was developed for the environmental impact monitoring of oil spill dispersants. Previously reported instability of dioctyl sulfosuccinate (DOSS) dispersant tracer was addressed by the new procedure. The method monitors both DOSS and its degradation product, monooctyl sulfosuccinate (MOSS), by liquid chromatography time-of-flight mass spectrometry. The related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate, was chromatographically resolved from MOSS but was not a product of DOSS degradation. Using this direct injection method (10 µL), the practical lower limit of quantitation was 0.5 nM for each analyte, a concentration equivalent to 0.22 ng mL-1, or 0.30 ng mL-1 including initial dilution factor with acetonitrile. The method was shown applicable to analysis of the dispersants Corexit® EC9500 A, Finasol OSR 52, Slickgone NS, and Slickgone EW for which DOSS is an active ingredient. A marine microcosm study of Corexit EC9500A, together with diluted bitumen (dilbit), at 15 ± 1 °C, provided evidence of the stoichiometric conversion of DOSS to MOSS under conditions reflecting a western Canadian marine environment. The advantage of the developed method is in its ability to extend environmental seawater sample collection time from 4 days for DOSS alone, to 14 days when both DOSS and MOSS are simultaneously analysed and results combined. The collection time is likely extended beyond the 14 day period with cooler temperatures. Preservation of collected seawater samples using sodium hydroxide, converting DOSS into MOSS in situ, was rejected due to stability issues. Addition of disodium ethylenediaminetetraacetic acid did not improve hold times, thus eliminating the theory of cation induced micelle effects causing DOSS loss.
Assuntos
Ácido Dioctil Sulfossuccínico/química , Monitoramento Ambiental/métodos , Lipídeos/química , Água do Mar/química , Succinatos/química , Tensoativos/análise , Canadá , Cromatografia Líquida , Lipídeos/análise , Compostos Orgânicos/análise , Tensoativos/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análiseRESUMO
Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants.
RESUMO
The present study investigated oil dispersant toxicity to fish species typical of the cooler regions of Canada, together with less well-documented issues pertaining to oil dispersant monitoring. The oil dispersant toxicity of Corexit EC9500A was assessed for the freshwater fish species rainbow trout and the seawater species coho, chinook, and chum, with a final median lethal concentration (LC50) acute lethality range between 35.3 and 59.8 mg/L. The LC50 range was calculated using confirmed 0-h dispersant concentrations that were justified by fish mortality within the first 24 h of exposure and by variability of the dispersant indicator dioctyl sulfosuccinate (DOSS) used to monitor concentrations at later time points. To investigate DOSS as an oil dispersant indicator in the environment, microcosm systems were prepared containing Corexit EC9500A, Finasol OSR52, Slickgone NS, and Slickgone EW dispersants together with diluted bitumen. The DOSS indicator recovery was found to be stable for up to 13 d at 5 °C, 8 d at 10 °C, but significantly less than 8 d at ≥15 °C. After 3 d at temperatures ≥15 °C, the DOSS indicator recovery became less accurate and was dependent on multiple environmental factors including temperature, microbial activity, and aeration, with potential for loss of solvents and stabilizers. A final assessment determined DOSS to be a discrepant indicator for long-term monitoring of oil dispersant in seawater. Environ Toxicol Chem 2018;37:1309-1319. © 2018 SETAC.
Assuntos
Ácido Dioctil Sulfossuccínico/química , Hidrocarbonetos/química , Lipídeos/toxicidade , Petróleo/toxicidade , Tensoativos/toxicidade , Testes de Toxicidade Aguda , Aerobiose , Anaerobiose , Animais , Bactérias/efeitos dos fármacos , Canadá , Cátions , Água Doce , Oncorhynchus mykiss/fisiologia , Compostos Orgânicos/química , Poluição por Petróleo/análise , Água do Mar , Solventes , Temperatura , Poluentes Químicos da Água/toxicidadeRESUMO
The toxicity of oil sands process-affected water (OSPW) has been primarily attributed to polar organic constituents, including naphthenic acid fraction components (NAFCs). Our objective was to assess the toxicity of NAFCs derived from fresh and aged OSPW, as well as commercial naphthenic acid (NA) mixtures. Exposures were conducted with three aquatic species: Hyalella azteca (freshwater amphipod), Vibrio fischeri (marine bacterium, Microtox® assay), and Lampsilis cardium (freshwater mussel larvae (glochidia)). Commercial NAs were more toxic than NAFCs, with differences of up to 30-, 4-, and 120-fold for H. azteca, V. fischeri, and L. cardium, respectively, demonstrating that commercial NAs are not reliable surrogates for assessing the toxicity of NAFCs. Differences in toxicity between species were striking for both commercial NAs and NAFCs. Overall, V. fischeri was the least sensitive and H. azteca was the most sensitive organism. Responses of V. fischeri and H. azteca to NAFC exposures were consistent (< 2-fold difference) regardless of source and age of OSPW; however, effects on L. cardium ranged 17-fold between NAFCs. NAFCs derived from fresh OSPW sources were similarly or less toxic to those from aged OSPW. Our results support the need to better characterize the complex mixtures associated with bitumen-influenced waters, both chemically and toxicologically.
Assuntos
Ácidos Carboxílicos/toxicidade , Invertebrados/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri , Anfípodes , Animais , Água Doce , Hidrocarbonetos , Campos de Petróleo e Gás , Poluição por Petróleo , Poluentes Químicos da Água/análiseRESUMO
The advantage of using naphthenic acid (NA) mixtures for the determination of total NA lies in their chemical characteristics and identification of retention times distinct from isobaric interferences. However, the differing homolog profiles and unknown chemical structures of NA mixtures do not allow them to be considered a traceable reference material. The current study provides a new tool for the comparative assessment of different NA mixtures by direct reference to a single, well-defined and traceable compound, decanoic-d19 acid. The method employed an established liquid chromatography time-of-flight mass spectrometry (LC/QToF) procedure that was applicable both to the classic O2 NA species dominating commercial mixtures and additionally to the O4 species known to be present in acid extractable organics (AEOs) derived from oil sands process water (OSPW). Four different commercial NA mixtures and one OSPW-derived AEOs mixture were comparatively assessed. Results showed significant difference among Merichem Technical, Aldrich, Acros, and Kodak commercial NA mixtures with respect to "equivalent to decanoic-d19 acid" concentration ratios to nominal. Furthermore, different lot numbers of single commercial NA mixtures were found to be inconsistent with respect to their homolog content by percent response. Differences in the observed homolog content varied significantly, particularly at the lower (n = 9-14) and higher (n = 20-23) carbon number ranges. Results highlighted the problem between using NA mixtures from different sources and different lot numbers but offered a solution to the problem from a concentration perspective. It is anticipated that this tool may be utilized in review of historical data in addition to future studies, such as the study of OSPW derived acid extractable organics (AEOs) and fractions employed during toxicological studies.
Assuntos
Ácidos Carboxílicos/toxicidade , Resíduos Industriais , Campos de Petróleo e Gás , Poluentes Químicos da Água/toxicidade , Cromatografia Líquida , Humanos , Limite de Detecção , Espectrometria de Massas , Valores de ReferênciaRESUMO
Unconventional oil production in Alberta's oil sands generates oil sands process-affected water (OSPW), which contains toxic constituents such as naphthenic acid fraction components (NAFCs). There have been few studies examining effects of NAFC exposure over long periods of early-life stage development in fish. Here we examined the effects of NAFCs extracted from OSPW to embryo-larval fathead minnow, exposed for 21 days. We compared the sensitivity of fathead minnow to walleye reared to 7 days post-hatch (18-20 days total). EC50s for hatch success, including deformities, and total survival were lower for walleye (10-11 mg/L) than fathead minnow (22-25 mg/L), with little post-hatch mortality observed in either species. NAFC exposure affected larval growth at concentrations below the EC50 in fathead minnow (total mass IC10 14-17 mg/L). These data contribute to an understanding of the developmental stages targeted by oil sands NAFCs, as well as their toxicity in a greater range of relevant taxa.
Assuntos
Ácidos Carboxílicos/química , Cyprinidae , Resíduos Industriais/efeitos adversos , Campos de Petróleo e Gás , Percas , Poluentes Químicos da Água/toxicidade , Alberta , Animais , Embrião não Mamífero/efeitos dos fármacosRESUMO
A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0µgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02µgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005µgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004µgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed and a quantitative assay of an adamantane carboxylic acid is reported.
Assuntos
Ácidos Carboxílicos/administração & dosagem , Água Subterrânea/química , Poluentes Químicos da Água/análise , Cromatografia Líquida/métodos , Isomerismo , Limite de Detecção , Mineração , Campos de Petróleo e Gás , Espectrometria de Massas em Tandem/métodosRESUMO
Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited.