Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20330, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434060

RESUMO

Accurate and reliable lung nodule segmentation in computed tomography (CT) images is required for early diagnosis of lung cancer. Some of the difficulties in detecting lung nodules include the various types and shapes of lung nodules, lung nodules near other lung structures, and similar visual aspects. This study proposes a new model named Lung_PAYNet, a pyramidal attention-based architecture, for improved lung nodule segmentation in low-dose CT images. In this architecture, the encoder and decoder are designed using an inverted residual block and swish activation function. It also employs a feature pyramid attention network between the encoder and decoder to extract exact dense features for pixel classification. The proposed architecture was compared to the existing UNet architecture, and the proposed methodology yielded significant results. The proposed model was comprehensively trained and validated using the LIDC-IDRI dataset available in the public domain. The experimental results revealed that the Lung_PAYNet delivered remarkable segmentation with a Dice similarity coefficient of 95.7%, mIOU of 91.75%, sensitivity of 92.57%, and precision of 96.75%.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tórax
2.
J Med Phys ; 47(1): 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548037

RESUMO

Purpose: In the field of medical diagnosis, deep learning-based computer-aided detection of diseases will reduce the burden of physicians in the diagnosis of diseases especially in the case of lung cancer nodule classification. Materials and Methods: A hybridized model which integrates deep features from Residual Neural Network using transfer learning and handcrafted features from the histogram of oriented gradients feature descriptor is proposed to classify the lung nodules as benign or malignant. The intrinsic convolutional neural network (CNN) features have been incorporated and they can resolve the drawbacks of handcrafted features that do not completely reflect the specific characteristics of a nodule. In the meantime, they also reduce the need for a large-scale annotated dataset for CNNs. For classifying malignant nodules and benign nodules, radial basis function support vector machine is used. The proposed hybridized model is evaluated on the LIDC-IDRI dataset. Results: It has achieved an accuracy of 97.53%, sensitivity of 98.62%, specificity of 96.88%, precision of 95.04%, F1 score of 0.9679, false-positive rate of 3.117%, and false-negative rate of 1.38% and has been compared with other state of the art techniques. Conclusions: The performance of the proposed hybridized feature-based classification technique is better than the deep features-based classification technique in lung nodule classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA