Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 401: 130735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670293

RESUMO

Municipal wastewater treatment plants are mostly based on traditional activated sludge (AS) processes. These systems are characterised by major drawbacks: high energy consumption, large amount of excess sludge and high greenhouse gases emissions. Treatment through microalgal-bacterial consortia (MBC) is an alternative and promising solution thanks to lower energy consumption and emissions, biomass production and water sanitation. Here, microbial difference between a traditional anaerobic sludge (AS) and a consortium-based system (photo-sequencing batch reactor (PSBR)) with the same wastewater inlet were characterised through shotgun metagenomics. Stable nitrification was achieved in the PSBR ensuring ammonium removal > 95 % and significant total nitrogen removal thanks to larger flocs enhancing denitrification. The new system showed enhanced pathogen removal, a higher abundance of photosynthetic and denitrifying microorganisms with a reduced emissions potential identifying this novel PSBR as an effective alternative to AS.


Assuntos
Bactérias , Reatores Biológicos , Microalgas , Nitrogênio , Esgotos , Águas Residuárias , Esgotos/microbiologia , Microalgas/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Consórcios Microbianos/fisiologia , Purificação da Água/métodos , Desnitrificação , Eliminação de Resíduos Líquidos/métodos , Nitrificação
2.
Environ Microbiol ; 25(11): 2351-2367, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403552

RESUMO

We investigated the changes in microbial community diversities and functions in natural downed wood at different decay stages in a natural oak forest in the Italian Alps, through metagenomics analysis and in vitro analysis. Alfa diversity of bacterial communities was affected by the decay stage and log characteristics, while beta diversity was mainly driven by log diameter. Fungal and archaeal beta diversities were affected by the size of the sampled wood (log diameter), although, fungi were prominently driven by wood decay stage. The analysis of genes targeting cell wall degradation revealed higher abundances of cellulose and pectin-degrading enzymes in bacteria, while in fungi the enzymes targeting cellulose and hemicellulose were more abundant. The decay class affected the abundance of single enzymes, revealing a shift in complex hydrocarbons degradation pathways along the decay process. Moreover, we found that the genes related to Coenzyme M biosynthesis to be the most abundant especially at early stages of wood decomposition while the overall methanogenesis did not seem to be influenced by the decay stage. Intra- and inter-kingdom interactions between bacteria and fungi revealed complex pattern of community structure in response to decay stage possibly reflecting both direct and indirect interactions.


Assuntos
Fungos , Microbiota , Fungos/genética , Florestas , Madeira/microbiologia , Microbiota/genética , Bactérias/genética , Celulose
3.
Bioresour Technol ; 375: 128828, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878375

RESUMO

This study aims at evaluating an innovative biotechnological process for the concomitant bioremediation and valorization of wastewater from textile digital printing technology based on a microalgae/bacteria consortium. Nutrient and colour removal were assessed in lab-scale batch and continuous experiments and the produced algae/bacteria biomass was characterized for pigment content and biomethane potential. Microbial community analysis provided insight of the complex community structure responsible for the bioremediation action. Specifically, a community dominated by Scenedesmus spp. and xenobiotic and dye degrading bacteria was naturally selected in continuous photobioreactors. Data confirm the ability of the microalgae/bacteria consortium to grow in textile wastewater while reducing the nutrient content and colour. Improvement strategies were eventually identified to foster biomass growth and process performances. The experimental findings pose the basis of the integration of a microalgal-based process into the textile sector in a circular economy perspective.


Assuntos
Corantes , Microalgas , Scenedesmus , Têxteis , Águas Residuárias , Bactérias/metabolismo , Biomassa , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Nitrogênio , Fotobiorreatores/microbiologia , Scenedesmus/metabolismo , Corantes/farmacologia
4.
Environ Microbiol ; 24(12): 5998-6016, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36325730

RESUMO

The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.


Assuntos
Camada de Gelo , Microbiologia do Solo , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Solo/química
5.
Foods ; 11(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140896

RESUMO

Two Zymomonas mobilis wild strains (UMB478 and 479) isolated from water kefir were characterized for their biomass production levels and leavening performance when used as the inoculum of a real bread-like dough formulation. The obtained baked product would be consumable by people with adverse responses to Saccharomyces cerevisiae. In liquid cultures, the two strains reached similar biomass concentration (0.7 g CDW/L). UMB479 showed an interesting resistance to NaCl (MBC 30 g/L), that may be useful in the bakery sector. When inoculated in doughs, UMB479 produced the maximum dough volume (650 mL) after 5 h, glucose was almost consumed and 1 g/100 g of ethanol produced, +200% respective to UMB478. Using S. cerevisiae for comparison purposes, the dough doubled its volume fast, in only 2 h, but reached a final level of 575 mL, lower than that achieved by Z. mobilis. The analysis of bacterial and fungal population dynamics during dough leavening was performed through the Automated Ribosomal Intergenic Spacer Analysis (ARISA); doughs leavened by UMB479 showed an interesting decrease in fungal richness after leavening. S. cerevisiae, instead, created a more complex fungal community, similar before and after leavening. Results will pave the way for the use of Z. mobilis UMB479 in commercial yeast-free leavened products.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36612363

RESUMO

According to the World Health Organization, the two major public health threats in the twenty-first century are antibiotic-resistant bacteria and antibiotic-resistant genes. The reason for the global prevalence and the constant increase of antibiotic-resistant bacteria is owed to the steady rise in overall antimicrobial consumption in several medical, domestic, agricultural, industrial, and veterinary applications, with consequent environmental release. These antibiotic residues may directly contaminate terrestrial and aquatic environments in which antibiotic-resistance genes are also present. Reports suggest that metal contamination is one of the main drivers of antimicrobial resistance (AMR). Moreover, the abundance of antibiotic-resistance genes is directly connected to the predominance of metal concentrations in the environment. In addition, microplastics have become a threat as emerging contaminants because of their ubiquitous presence, bio-inertness, toughness, danger to aquatic life, and human health implications. In the environment, microplastics and AMR are interconnected through biofilms, where genetic information (e.g., ARGs) is horizontally transferred between bacteria. From this perspective, we tried to summarize what is currently known on this topic and to propose a more effective One Health policy to tackle these threats.


Assuntos
Anti-Infecciosos , Saúde Única , Humanos , Antibacterianos/farmacologia , Microplásticos/toxicidade , Plásticos , Farmacorresistência Bacteriana/genética , Xenobióticos , Bactérias/genética , Genes Bacterianos
7.
Heliyon ; 7(11): e08445, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34901500

RESUMO

Implementation of onsite bioremediation technologies is essential for textile industries due to rising concerns in terms of water resources and quality. Partial nitritation-anaerobic ammonium oxidation (PN/A) processes emerged as a valid, but unexplored, solution. In this study, the performance of a PN/A pilot-scale (9 m3) sequencing batch reactor treating digital textile printing wastewater (10-40 m3 d-1) was monitored by computing nitrogen (N) removal rate and efficiencies. Moreover, the structure of the bacterial community was assessed by next generation sequencing and quantitative polymerase chain reaction (qPCR) analyses of several genes, which are involved in the N cycle. Although anaerobic ammonium oxidation activity was inhibited and denitrification occurred, N removal rate increased from 16 to 61 mg N g VSS-1 d-1 reaching satisfactory removal efficiency (up to 70%). Ammonium (18-70 mg L-1) and nitrite (16-82 mg L-1) were detected in the effluent demonstrating an unbalance between the aerobic and anaerobic ammonia oxidation activity, while constant organic N was attributed to recalcitrant azo dyes. Ratio between nitrification and anammox genes remained stable reflecting a constant ammonia oxidation activity. A prevalence of ammonium oxidizing bacteria and denitrifiers suggested the presence of alternative pathways. PN/A resulted a promising cost-effective alternative for textile wastewater N treatment as shown by the technical-economic assessment. However, operational conditions and design need further tailoring to promote the activity of the anammox bacteria.

8.
Front Microbiol ; 12: 633535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935994

RESUMO

The amount of nitrogen (N) deposition onto forests has globally increased and is expected to double by 2050, mostly because of fertilizer production and fossil fuel burning. Several studies have already investigated the effects of N depositions in forest soils, highlighting negative consequences on plant biodiversity and the associated biota. Nevertheless, the impact of N aerial inputs deposited directly on the tree canopy is still unexplored. This study aimed to investigate the influence of increased N deposition on the leaf-associated fungal and bacterial communities in a temperate forest dominated by Sessile oak [Quercus petraea (Matt.) Liebl.]. The study area was located in the Monticolo forest (South Tyrol, Italy), where an ecosystem experiment simulating an increased N deposition has been established. The results highlighted that N deposition affected the fungal beta-diversity and bacterial alpha-diversity without affecting leaf total N and C contents. We found several indicator genera of both fertilized and natural conditions within bacteria and fungi, suggesting a highly specific response to altered N inputs. Moreover, we found an increase of symbiotrophic fungi in N-treated, samples which are commonly represented by lichen-forming mycobionts. Overall, our results indicated that N-deposition, by increasing the level of bioavailable nutrients in leaves, could directly influence the bacterial and fungal community diversity.

9.
Appl Microbiol Biotechnol ; 105(6): 2195-2224, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33630152

RESUMO

Anaerobic biodegradation of toxic compounds found in industrial wastewater is an attractive solution allowing the recovery of energy and resources but it is still challenging due to the low kinetics making the anaerobic process not competitive against the aerobic one. In this review, we summarise the present state of knowledge on the anaerobic biodegradation process for phenol, a typical target compound employed in toxicity studies on industrial wastewater treatment. The objective of this article is to provide an overview on the microbiological and technological aspects of anaerobic phenol degradation and on the research needs to fill the gaps still hindering the diffusion of the anaerobic process. The first part is focused on the microbiology and extensively presents and characterises phenol-degrading bacteria and biodegradation pathways. In the second part, dedicated to process feasibility, anaerobic and aerobic biodegradation kinetics are analysed and compared, and strategies to enhance process performance, i.e. advanced technologies, bioaugmentation, and biostimulation, are critically analysed and discussed. The final section provides a summary of the research needs. Literature data analysis shows the feasibility of anaerobic phenol biodegradation at laboratory and pilot scale, but there is still a consistent gap between achieved aerobic and anaerobic performance. This is why current research demand is mainly related to the development and optimisation of powerful technologies and effective operation strategies able to enhance the competitiveness of the anaerobic process. Research efforts are strongly justified because the anaerobic process is a step forward to a more sustainable approach in wastewater treatment.Key points• Review of phenol-degraders bacteria and biodegradation pathways.• Anaerobic phenol biodegradation kinetics for metabolic and co-metabolic processes.• Microbial and technological strategies to enhance process performance.


Assuntos
Fenol , Águas Residuárias , Anaerobiose , Biodegradação Ambiental , Fenóis , Águas Residuárias/análise
10.
Environ Sci Pollut Res Int ; 28(34): 46643-46654, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33078358

RESUMO

Digital textile printing (DTP) is a game-changer technology that is rapidly expanding worldwide. On the other hand, process wastewater is rich in ammoniacal and organic nitrogen, resulting in relevant issues for discharge into sewer system and treatment in centralized plants. The present research is focused on the assessment of the partial nitritation/anammox process in a single-stage granular sequencing batch reactor for on-site decentralized treatment. The technical feasibility of the process was assessed by treating wastewater from five DTP industries in a laboratory-scale reactor, in one case investigating long-term process stabilization. While experimental results indicated nitrogen removal efficiencies up to about 70%, complying with regulations on discharge in sewer system, these data were used as input for process modelling, whose successful parameter calibration was carried out. The model was applied to the simulation of two scenarios: (i) the current situation of a DTP company, in which wastewater is discharged into the sewer system and treated in a centralized plant, (ii) the modified situation in which on-site decentralized treatment for DTP wastewater is implemented. The second scenario resulted in significant improvements, including reduced energy consumption (- 15%), reduced greenhouse gases emission, elimination of external carbon source for completing denitrification at centralized WWTP and reduced sludge production (- 25%).


Assuntos
Nitrogênio , Águas Residuárias , Amônia , Reatores Biológicos , Desnitrificação , Oxirredução , Avaliação de Processos em Cuidados de Saúde , Esgotos , Têxteis
11.
Antibiotics (Basel) ; 9(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752276

RESUMO

Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics.

12.
Appl Microbiol Biotechnol ; 104(15): 6825-6838, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488314

RESUMO

The anaerobic biodegradation of phenol has been realised in a sequencing batch reactor (SBR) under anaerobic conditions with phenol as sole carbon and energy source and with glucose as co-substrate. A step-change increase of phenol loading (from 100 up to 2000 mg/L of phenol concentration in the feed solution) has been applied during the acclimation phase in order to progressively induce the development of a specialised microbial consortium. This approach, combined with the dynamic sequence of operations characterising SBRs and with the high biomass retention time, led to satisfactory phenol and COD removal efficiencies with values > 70% for the highest phenol input (2000 mg/L) fed as the single carbon and energy source. Analysis of removal efficiencies and biodegradation rates suggested that the use of glucose as co-substrate did not induce a significant improvement in process performance. Kinetic tests have been performed at different initial phenol (400-1000 mg/L) and glucose (1880-0 mg/L) concentrations to kinetically characterise the developed biomass: estimated kinetic constants are suitable for application and no inhibitory effect due to high concentrations of phenol has been observed in all investigated conditions. The microbial community has been characterised at different operating conditions through molecular tools: results confirm the successful adaptation-operation approach of the microbial consortium showing a gradual increase in richness and diversity and the occurrence and selection of a high proportion of phenol-degrading genera at the end of the experimentation. Key Points • Anaerobic phenol removal in the range of 70-99% in a sequencing batch reactor. • Negligible effect of co-substrate on removal efficiencies and biodegradation rates. • No biomass inhibition due to phenol concentration in the range of 400-1000 mg/L. • Increasing phenol loads promoted the culture enrichment of phenol-degrading genera.


Assuntos
Biodegradação Ambiental , Biomassa , Reatores Biológicos/microbiologia , Microbiota , Fenol/metabolismo , Anaerobiose , Glucose/metabolismo , Cinética , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32235649

RESUMO

The source of antibiotic residuals can be directly related to the presence of municipal or industrial wastewater and agricultural activities. Antibiotics can trigger the dissemination of antibiotic resistance genes within bacterial communities. The mobile genetic elements Class 1 integrons (intl1 region) has been already found to be correlated with a wide range of pollutants (i.e., antibiotics, heavy metals), and hence, it has been proposed as a proxy for environmental health. This study aimed to assess the presence of intl1 in different environmental matrices, including agricultural and forest soils, freshwater and unpolluted sediments in the upper Adige River catchment (N Italy), in order to identify the spread of pollutants. Intl1 was detected by direct PCR amplification at different frequencies. The urban and agricultural areas revealed the presence of intl1, except for apple orchards, where it was below the detection limit. Interestingly, intl1 was found in a presumed unpolluted environment (glacier moraine), maybe because of the high concentration of metal ions in the mineral soil. Finally, intl1 was absent in forest fresh-leaf litter samples and occurred with low rates in soil. Our results provide new data in supporting the use of intl1 to detect the environmental health of different land-use systems.


Assuntos
Monitoramento Ambiental , Integrons , Rios/química , Antibacterianos , Resistência Microbiana a Medicamentos , Itália , Metais Pesados , Poluentes Químicos da Água
14.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730200

RESUMO

Rock varnish is a microbial habitat, characterised by thin (5-500 µm) and shiny coatings of iron (Fe) and manganese (Mn) oxides associated with clay minerals. This structure is well studied by geologists, and recently there have been reports about the taxonomical composition of its microbiome. In this study, we investigated the rock varnish microbiome using shotgun metagenomics together with analyses of elemental composition, lipid and small molecule biomarkers, and rock surface analyses to explore the biogeography of microbial communities and their functional features. We report taxa and encoded functions represented in metagenomes retrieved from varnish or non-varnish samples, additionally, eight nearly complete genomes have been reconstructed spanning four phyla (Acidobacteria, Actinobacteria, Chloroflexi and TM7). The functional and taxonomic analyses presented in this study provide new insights into the ecosystem dynamics and survival strategies of microbial communities inhabiting varnish and non-varnish rock surfaces.


Assuntos
Acidobacteria/genética , Actinobacteria/genética , Chloroflexi/genética , Metagenoma/genética , Microbiologia do Solo , Genoma Bacteriano/genética , Ferro , Compostos de Manganês , Metagenômica/métodos , Microbiota/fisiologia , Óxidos , Pintura
15.
Microorganisms ; 7(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547404

RESUMO

Microbes drive leaf litter decomposition, and their communities are adapted to the local vegetation providing that litter. However, whether these local microbial communities confer a significant home-field advantage in litter decomposition remains unclear, with contrasting results being published. Here, we focus on a litter transplantation experiment from oak forests (home site) to two away sites without oak in South Tyrol (Italy). We aimed to produce an in-depth analysis of the fungal and bacterial decomposer communities using Illumina sequencing and qPCR, to understand whether local adaptation occurs and whether this was associated with litter mass loss dynamics. Temporal shifts in the decomposer community occurred, reflecting changes in litter chemistry over time. Fungal community composition was site dependent, while bacterial composition did not differ across sites. Total litter mass loss and rates of litter decomposition did not change across sites. Litter quality influenced the microbial community through the availability of different carbon sources. Additively, our results do not support the hypothesis that locally adapted microbial decomposers lead to a greater or faster mass loss. It is likely that high functional redundancy within decomposer communities regulated the decomposition, and thus greater future research attention should be given to trophic guilds rather than taxonomic composition.

16.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443334

RESUMO

This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition, for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces (T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively. In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic fermentation on the spontaneous malolactic consortium, in relation to wine.


Assuntos
Metagenoma/genética , Vinho/microbiologia , Fermentação/genética , Fermentação/fisiologia , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , RNA Ribossômico 16S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Torulaspora/genética , Torulaspora/metabolismo
17.
PeerJ ; 6: e5769, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345177

RESUMO

We studied the relationship between plant functional foliar traits and the endophytic bacterial communities associated in trees, taking the example of sessile oak (Quercus petraea (Matt.) Liebl). Forty-five samples with replicates of eight leaves per sample were collected in spring, summer and autumn. Bacterial community diversity was analyzed via Automated Ribosomal Intergenic Spacer Analysis (ARISA). The leaf traits specific leaf area, level of herbivory, stomatal number, stomatal length, carbon and nitrogen concentration were measured for the leaves of each sample. For statistical analysis, linear mixed effect models, the Canonical Correlation Analysis (CCA) and Non-Parametric Multivariate Analysis of Variance (NPMANOVA) were applied. Herbivory, nitrogen and carbon concentration were significantly different in autumn compared to spring and summer (p value < 0.05), while stomatal length was differentiated between spring and the other two seasons (p value < 0.01). The seasonal differentiation of the bacterial community structure was explained by the first and second axes (29.7% and 25.3%, respectively) in the CCA. The bacterial community structure significantly correlated with herbivory, nitrogen concentration and stomatal length. We conclude that herbivory, nitrogen content, and size of stomatal aperture at the leaf level are important for endophyte colonization in oaks growth in alpine forest environments.

18.
Environ Sci Pollut Res Int ; 25(25): 25420-25431, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29951760

RESUMO

The halophytes have evolved several strategies to survive in saline environments; however, an additional support from their associated microbiota helps combat adverse conditions. Hence, our driving interests to investigate the endophytic bacterial community richness, diversity, and composition associated to roots of Salicornia europaea from two test sites with different origins of soil salinity. We assumed that salinity will have a negative effect on the diversity of endophytes but simultaneously will permit the high occurrence of halophylic bacteria. Further, to establish the role of the host and its external environment in determining the endophytic diversity, we analyzed the physico-chemical parameters of root zone soil and the concentration of salt ions in the plant roots. The results based on the Miseq Illumina sequencing approach revealed a higher number of endophytic bacterial OTUs at naturally saline test site with a higher level of soil salinity. Proteobacteria and Bacteriodetes were the dominant endophytic phyla at both analyzed sites; additionally, the high occurrence of Planctomycetes and Acidobacteria at more saline site and the occurrence of Firmicutes, Actinobacteria, and Chloroflexi at less saline site were recorded. The salinity in the root zone soil was crucial in structuring the endophytic community of S. europaea, and the significant prevalence of representatives from the phyla Deltaproteobacteria, Acidobacteria, Caldithrix, Fibrobacteres, and Verrucomicrobia at the more saline test site suggest domination of halophylic bacteria with potential role in mitigation of salt stress of halophytes.


Assuntos
Bactérias/efeitos dos fármacos , Chenopodiaceae/efeitos dos fármacos , Endófitos/crescimento & desenvolvimento , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Microbiologia do Solo , Solo/química , Bactérias/crescimento & desenvolvimento , Biodiversidade , Chenopodiaceae/microbiologia , Chenopodiaceae/fisiologia , Microbiota , Raízes de Plantas/microbiologia , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/microbiologia
19.
J Hazard Mater ; 353: 108-117, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29655090

RESUMO

Wood-tar is a liquid material obtained by wood gasification process, and comprises several polycyclic aromatic hydrocarbons (PAH). Tar biodegradation is a very challenging task, due to its toxicity and to its complex chemistry. The 'microbial resource management' concerns the use of environmental microbial communities potentially able to provide us services. We applied this concept in tar biodegradation. Tar composed by several PAH (including phenanthrene, acenaphthylene and fluorene) was subjected to a biodegradation process in triplicate microcosms spiked with a microbial community collected from PAH-rich soils. In 20 days, 98.9% of tar was mineralized or adsorbed to floccules, while negative controls showed poor PAH reduction. The dynamics of fungal and bacterial communities was assessed through Automated Ribosomal Intergenic Spacer Analysis (ARISA), 454 pyrosequencing of the fungal ITS and of the bacterial 16S rRNA. Quantification of the degrading bacterial communities was performed via quantitative Real Time PCR of the 16S rRNA genes and of the cathecol 2,3-dioxygenase genes. Results showed the importance of fungal tar-degrading populations in the first period of incubation, followed by a complex bacterial dynamical growth ruled by co-feeding behaviors.


Assuntos
Consórcios Microbianos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Madeira , Adsorção , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Catecol 2,3-Dioxigenase/genética , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , RNA Ribossômico 16S
20.
Microb Ecol ; 76(4): 1030-1040, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582105

RESUMO

Litter decomposition is the main source of mineral nitrogen (N) in terrestrial ecosystem and a key step in carbon (C) cycle. Microbial community is the main decomposer, and its specialization on specific litter is considered at the basis of higher decomposition rate in its natural environment than in other forests. However, there are contrasting evidences on how the microbial community responds to a new litter input and if the mass loss is higher in natural environment. We selected leaf litter from three different plant species across three sites of different altitudinal ranges: oak (Quercus petraea (Matt.) Liebl., 530 m a.s.l), beech (Fagus sylvatica L., 1000 m a.s.l.), rhododendron (Rhododendron ferrugineum L., 1530 m a.s.l.). A complete transplantation experiment was set up within the native site and the other two altitudinal sites. Microbial community structure was analyzed via amplified ribosomal intergenic spacer analysis (ARISA) fingerprinting. Functionality was investigated by potential enzyme activities. Chemical composition of litter was recorded. Mass loss showed no faster decomposition rate on native site. Similarly, no influence of site was found on microbial structure, while there was a strong temporal variation. Potential enzymatic activities were not affected by the same temporal pattern with a general increase of activities during autumn. Our results suggested that no specialization in microbial community is present due to the lack of influence of the site in structure and in the mass loss dynamics. Finally, different temporal patterns in microbial community and potential enzymatic activities suggest the presence of functional redundancy within decomposers.


Assuntos
Bactérias/metabolismo , Carbono/análise , Florestas , Microbiota , Nitrogênio/análise , Folhas de Planta/química , Microbiologia do Solo , Fagus/crescimento & desenvolvimento , Itália , Quercus/crescimento & desenvolvimento , Rhododendron/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA