Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575714

RESUMO

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

3.
BMC Genomics ; 25(1): 275, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475721

RESUMO

BACKGROUND: The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS: The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS: The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.


Assuntos
Besouros , Espécies Introduzidas , Animais , Besouros/genética , Genômica , Canadá , Itália , Filogenia
4.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321133

RESUMO

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Assuntos
COVID-19 , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , SARS-CoV-2 , Genótipo
5.
HLA ; 103(1): e15251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850268

RESUMO

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Assuntos
COVID-19 , Cadeias beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genótipo , Autoanticorpos/genética
8.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552859

RESUMO

Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.


Assuntos
COVID-19 , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Alelos , Fibrose Cística/patologia , COVID-19/genética , Heterozigoto
9.
Ophthalmic Genet ; 43(1): 120-122, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551660

RESUMO

BACKGROUND: Chromosome 4q deletions are rare disorders phenotypically characterized by several features. The most commonly described ocular abnormalities include unilateral microphthalmia with bilateral colobomata, blue sclerae with pigmented retinal clumps, hypermetropia, and a divergent squint. PURPOSE: To report a case of 4q12 deletion with a singular retinal feature. MATERIALS AND METHODS: Case report. RESULTS: A 20-year-old Caucasian female with a history of poliosis, progressive appearance of small areas of skin depigmentation along trunk and limbs since birth and diagnosis of learning deficit was referred for a complete ocular examination. The genetic counseling showed microdeletion in the 4q12 region. An audiometric test was performed, showing a progressive bilateral neurosensorial hypoacusia. Ocular examination showed the presence of multifocal, tiny, whitish deposits in the posterior pole. Multimodal imaging defined the lesions as small elevations of the retinal pigment epithelium with slight hyper-autofluorescence and staining in the late phase of fluoresceine angiography (FA). Visual acuity was 20/20. The retinal findings did not change during the three-month follow-up. CONCLUSIONS: Although the findings herein reported have never been described before in patients affected by 4q12 mutations, we do not exclude that they could represent a manifestation of the peculiar genetic asset of the patient, related to dysfunction in pigment epithelium/neuroretinal metabolic activity.


Assuntos
Retina , Tomografia de Coerência Óptica , Adulto , Deleção Cromossômica , Feminino , Angiofluoresceinografia/métodos , Humanos , Imagem Multimodal , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Adulto Jovem
10.
Genes Immun ; 23(1): 51-56, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952932

RESUMO

Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.


Assuntos
COVID-19 , Receptor 7 Toll-Like , Citocinas/metabolismo , Regulação para Baixo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , SARS-CoV-2 , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo
11.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34889978

RESUMO

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Fenótipo , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Alemanha , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Quebeque , SARS-CoV-2 , Suécia , Reino Unido
12.
Front Genet ; 12: 761264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925453

RESUMO

Spondyloocular syndrome (SOS) is a skeletal disorder caused by pathogenic variants in XYLT2 gene encoding a xylotransferase involved in the biosynthesis of proteoglycans. This condition, with autosomal recessive inheritance, has a high phenotypic variability. It is characterized by bone abnormalities (osteoporosis, fractures), eye and cardiac defects, hearing impairment, and varying degrees of developmental delay. Until now only 20 mutated individuals have been reported worldwide. Here, we describe two siblings from consanguineous healthy parents in which a novel homozygous frameshift variant c.1586dup p(Thr530Hisfs*) in the XYLT2 gene was detected by exome sequencing (ES). The first patient (9 years) presented short stature with skeletal defects, long face, hearing loss and cataract. The second patient, evaluated at a few days of life, showed macrosomia, diffuse hypertrichosis on the back, overabundant skin in the retronucal area, flattened facial profile with drooping cheeks, elongated eyelid rims, wide and flattened nasal bridge and turned down corners of the mouth. During the prenatal period, high nuchal translucency and intestinal hyperechogenicity were observed at ultrasound. In conclusion, these two siblings with a novel pathogenic variant in XYLT2 further expand the clinical and mutational spectrum of SOS.

13.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948243

RESUMO

Intellectual disability (ID) is characterized by impairments in the cognitive processes and in the tasks of daily life. It encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders often associated with autism spectrum disorder (ASD). Social and communication abilities are strongly compromised in ASD. The prevalence of ID/ASD is 1-3%, and approximately 30% of the patients remain without a molecular diagnosis. Considering the extreme genetic locus heterogeneity, next-generation sequencing approaches have provided powerful tools for candidate gene identification. Molecular diagnosis is crucial to improve outcome, prevent complications, and hopefully start a therapeutic approach. Here, we performed parent-offspring trio whole-exome sequencing (WES) in a cohort of 60 mostly syndromic ID/ASD patients and we detected 8 pathogenic variants in genes already known to be associated with ID/ASD (SYNGAP1, SMAD6, PACS1, SHANK3, KMT2A, KCNQ2, ACTB, and POGZ). We found four de novo disruptive variants of four novel candidate ASD/ID genes: MBP, PCDHA1, PCDH15, PDPR. We additionally selected via bioinformatic tools many variants in unknown genes that alone or in combination can contribute to the phenotype. In conclusion, our data confirm the efficacy of WES in detecting pathogenic variants of known and novel ID/ASD genes.


Assuntos
Transtorno Autístico/genética , Sequenciamento do Exoma , Loci Gênicos , Predisposição Genética para Doença , Deficiência Intelectual/genética , Adolescente , Transtorno Autístico/patologia , Criança , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino
15.
Brain Sci ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356170

RESUMO

Intellectual disability (ID) and autism spectrum disorder (ASD) belong to neurodevelopmental disorders and occur in ~1% of the general population. Due to disease heterogeneity, identifying the etiology of ID and ASD remains challenging. Exome sequencing (ES) offers the opportunity to rapidly identify variants associated with these two entities that often co-exist. Here, we performed ES in a cohort of 200 patients: 84 with isolated ID and 116 with ID and ASD. We identified 41 pathogenic variants with a detection rate of 22% (43/200): 39% in ID patients (33/84) and 9% in ID/ASD patients (10/116). Most of the causative genes are genes responsible for well-established genetic syndromes that have not been recognized for atypical phenotypic presentations. Two genes emerged as new candidates: CACNA2D1 and GPR14. In conclusion, this study reinforces the importance of ES in the diagnosis of ID/ASD and underlines that "reverse phenotyping" is fundamental to enlarge the phenotypic spectra associated with specific genes.

16.
Front Oncol ; 11: 649435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026625

RESUMO

Hereditary Breast and Ovarian Cancer (HBOC) syndrome is a condition in which the risk of breast and ovarian cancer is higher than in the general population. The prevalent pathogenesis is attributable to inactivating variants of the BRCA1-2 highly penetrant genes, however, other cancer susceptibility genes may also be involved. By Exome Sequencing (WES) we analyzed a series of 200 individuals selected for genetic testing in BRCA1-2 genes according to the updated National Comprehensive Cancer Network (NCCN) guidelines. Analysis by MLPA was performed to detect large BRCA1-2 deletions/duplications. Focusing on BRCA1-2 genes, data analysis identified 11 cases with pathogenic variants (4 in BRCA1 and 7 in BRCA1-2) and 12 with uncertain variants (7 in BRCA1 and 5 in BRCA2). Only one case was found with a large BRCA1 deletion. Whole exome analysis allowed to characterize pathogenic variants in 21 additional genes: 10 genes more traditionally associated to breast and ovarian cancer (ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and TP53) (5% diagnostic yield) and 11 in candidate cancer susceptibility genes (DPYD, ERBB3, ERCC2, MUTYH, NQO2, NTHL1, PARK2, RAD54L, and RNASEL). In conclusion, this study allowed a personalized risk assessment and clinical surveillance in an increased number of HBOC families and to broaden the spectrum of causative variants also to candidate non-canonical genes.

17.
EBioMedicine ; 65: 103246, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33647767

RESUMO

BACKGROUND: While SARS-CoV-2 similarly infects men and women, COVID-19 outcome is less favorable in men. Variability in COVID-19 severity may be explained by differences in the host genome. METHODS: We compared poly-amino acids variability from WES data in severely affected COVID-19 patients versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects. FINDINGS: Shorter polyQ alleles (≤22) in the androgen receptor (AR) conferred protection against severe outcome in COVID-19 in the first tested cohort (both males and females) of 638 Italian subjects. The association between long polyQ alleles (≥23) and severe clinical outcome (p = 0.024) was also validated in an independent cohort of Spanish men <60 years of age (p = 0.014). Testosterone was higher in subjects with AR long-polyQ, possibly indicating receptor resistance (p = 0.042 Mann-Whitney U test). Inappropriately low serum testosterone level among carriers of the long-polyQ alleles (p = 0.0004 Mann-Whitney U test) predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of testosterone, patients with long-polyQ and age ≥60 years had increased levels of CRP (p = 0.018, not accounting for multiple testing). INTERPRETATION: We identify the first genetic polymorphism that appears to predispose some men to develop more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testosterone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels for the clinical outcome. These results may contribute to designing reliable clinical and public health measures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long AR polyQ repeats. FUNDING: MIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and "Bando Ricerca COVID-19 Toscana" project to Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from Intesa San Paolo.


Assuntos
COVID-19/patologia , Peptídeos/genética , Receptores Androgênicos/genética , Idoso , Estudos de Casos e Controles , Cuidados Críticos/estatística & dados numéricos , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Espanha , Testosterona/sangue
18.
Eur J Hum Genet ; 29(5): 745-759, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33456056

RESUMO

Within the GEN-COVID Multicenter Study, biospecimens from more than 1000 SARS-CoV-2 positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical clustering analysis identified five main clinical categories: (1) severe multisystemic failure with either thromboembolic or pancreatic variant; (2) cytokine storm type, either severe with liver involvement or moderate; (3) moderate heart type, either with or without liver damage; (4) moderate multisystemic involvement, either with or without liver damage; (5) mild, either with or without hyposmia. GCB and GCPR are further linked to the GCGDR, which includes data from whole-exome sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population, and mapping genetically COVID-19 severity and clinical complexity among patients.


Assuntos
Bancos de Espécimes Biológicos , COVID-19/genética , Predisposição Genética para Doença , Sistema de Registros , SARS-CoV-2 , Manejo de Espécimes , Adolescente , Adulto , COVID-19/epidemiologia , Feminino , Humanos , Itália , Masculino
19.
Eur J Med Genet ; 64(1): 104102, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33220470

RESUMO

Genetic conditions comprise a wide spectrum of different phenotypes, rapidly expanding due to new diagnostic methodologies. Patients' facial features and clinical history represent the key elements leading clinicians to the right diagnosis. CDKL5-early onset epilepsy and Pitt-Hopkins syndrome are two well-known genetic conditions, with a defined phenotype sharing some common characteristics like early-onset epilepsy and hyperventilation episodes. Whilst facial features represent a diagnostic handle in patients with Pitt-Hopkins syndrome, clinical history is crucial in patients carrying a mutation in CDKL5. Here we present the clinical case of a girl evaluated for the first time when she was 24-years old, with a clinical phenotype mimicking Pitt-Hopkins syndrome. Her facial features have become coarser while she was growing up, leading geneticists to raise different clinical hypotheses and to perform several molecular tests before getting the diagnosis of CDKL5-early-epileptic encephalopathy. This finding highlights that although typical facial gestalt has not so far extensively been described in CDKL5 mutated adult patients, peculiar facial features could be present later in life and may let CDKL5-related disorder mimic Pitt Hopkins. Thus, considering atypical Rett syndrome in the differential diagnosis of Pitt Hopkins syndrome could be important to solve complex clinical cases.


Assuntos
Epilepsia/genética , Hiperventilação/diagnóstico , Deficiência Intelectual/diagnóstico , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Adulto , Diagnóstico Diferencial , Epilepsia/patologia , Fácies , Feminino , Humanos , Hiperventilação/genética , Deficiência Intelectual/genética
20.
Front Med (Lausanne) ; 7: 580376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330536

RESUMO

Objectives: X-linked Alport syndrome (XLAS) females are at risk of developing proteinuria and chronic kidney damage (CKD). The aim of this study is to evaluate the genotype-phenotype correlation in this rare population. Materials and Methods: This is a prospective, observational study of XLAS females, confirmed by a pathogenic mutation in COL4A5 and renal ultrastructural evaluation. Proteinuria, renal function and extrarenal involvement were monitored during follow-up. Patients were divided in 2 groups, according to mutations in COL4A5: missense (Group 1) and non-missense variants (Group 2). Results: Twenty-four XLAS females, aged 10.6 ± 10.4 years at clinical onset (mean follow-up: 13.1 ± 12.6 years) were recruited between 2000 and 2017 at a single center. In group 1 there were 10 patients and in group 2, 14 (mean age at the end of follow-up: 24.9 ± 13.6 and 23.2 ± 13.8 years, respectively). One patient in Group 1 and 9 in Group 2 (p = 0.013) developed proteinuria during follow-up. Mean eGFR at last follow-up was lower in Group 2 (p = 0.027), where two patients developed CKD. No differences in hearing loss were documented among the two groups. Two patients in Group 2 carried one mutation in both COL4A5 and COL4A3 (digenic inheritance) and were proteinuric. In one family, the mother presented only hematuria while the daughter was proteinuric and presented a greater inactivation of the X chromosome carrying the wild-type allele. Conclusions: The appearance of proteinuria and CKD is more frequent in patients with severe variants. Carrying digenic inheritance and skewed XCI seem to be additional risk factors for proteinuria in XLAS females.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA