Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33687998

RESUMO

Arterial stiffening and cardiac dysfunction are hallmarks of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), but the molecular regulators remain unknown. Here, we show that the LaminAG609G mouse model of HGPS recapitulates the premature arterial stiffening and early diastolic dysfunction seen in human HGPS. Lysyl oxidase (LOX) is up-regulated in the arteries of these mice, and treatment with the LOX inhibitor, ß-aminopropionitrile, improves arterial mechanics and cardiac function. Genome-wide and mechanistic analysis revealed reduced expression of the LOX-regulator, miR-145, in HGPS arteries, and forced expression of miR-145 restores normal LOX gene expression in HGPS smooth muscle cells. LOX abundance is also increased in the carotid arteries of aged wild-type mice, but its spatial expression differs from HGPS and its up-regulation is independent of changes in miR-145 abundance. Our results show that miR-145 is selectively misregulated in HGPS and that the consequent up-regulation of LOX is causal for premature arterial stiffening and cardiac dysfunction.


Assuntos
Aminopropionitrilo/farmacocinética , Progéria/tratamento farmacológico , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Senilidade Prematura/genética , Senilidade Prematura/fisiopatologia , Aminopropionitrilo/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Progéria/metabolismo , Progéria/fisiopatologia , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Rigidez Vascular/efeitos dos fármacos , Rigidez Vascular/fisiologia
2.
Am J Stem Cells ; 7(4): 94-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510844

RESUMO

Cardiovascular disease (CVD) is the number one cause of death globally, and new therapeutic techniques outside of traditional pharmaceutical and surgical interventions are currently being developed. At the forefront is stem cell-centered therapy, with adipose derived stem cells (ADSCs), an adult stem population, providing significant clinical promise. When introduced into damaged heart tissue, ADSCs promote cardiac regeneration by a variety of mechanisms including differentiation into new cardiomyocytes and secretion of paracrine factors acting on endogenous cardiac cells. We discuss the application of ADSCs, their biochemical capabilities, availability, ease of extraction, clinical trial results, and areas of concern. The multipotent capacity of ADSCs along with their ability to secrete factors promoting cell survival and regeneration, along with their immunosuppressive capacity, make them an extremely promising approach in the field of CVD therapy.

3.
Cytoskeleton (Hoboken) ; 74(5): 205-218, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28329908

RESUMO

The peri-centrosomal localization and morphology of the Golgi apparatus depends largely on the microtubule cytoskeleton and the microtubule motor protein dynein. Recent studies proposed that myosin 18Aα (M18Aα) also contributes to Golgi morphology by binding the Golgi protein GOLPH3 and walking along adjacent actin filaments to stretch the Golgi into its classic ribbon structure. Biochemical analyses have shown, however, that M18A is not an actin-activated ATPase and lacks motor activity. Our goal, therefore, was to define the precise molecular mechanism by which M18Aα determines Golgi morphology. We show that purified M18Aα remains inactive in the presence of GOLPH3, arguing against the Golgi-specific activation of the myosin. Using M18A-specific antibodies and expression of GFP-tagged M18Aα, we find no evidence that it localizes to the Golgi. Moreover, several cell lines with reduced or eliminated M18Aα expression exhibited normal Golgi morphology. Interestingly, actin filament disassembly resulted in a marked reduction in lateral stretching of the Golgi in both control and M18Aα-deficient cells. Importantly, this reduction was accompanied by an expansion of the Golgi in the vertical direction, vertical movement of the centrosome, and increases in the height of both the nucleus and the cell. Collectively, our data indicate that M18Aα does not localize to the Golgi or play a significant role in determining its morphology, and suggest that global F-actin disassembly alters Golgi morphology indirectly by altering cell shape.


Assuntos
Actinas/metabolismo , Complexo de Golgi/metabolismo , Miosinas/metabolismo , Humanos
4.
Nat Cell Biol ; 19(2): 85-93, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28114272

RESUMO

The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Cadeias Leves de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Actomiosina/metabolismo , Animais , Técnicas de Introdução de Genes , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA