Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19942, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203907

RESUMO

Molecular dynamics (MD) is the common computational technique for assessing efficacy of GPCR-bound ligands. Agonist efficacy measures the capability of the ligand-bound receptor of reaching the active state in comparison with the free receptor. In this respect, agonists, neutral antagonists and inverse agonists can be considered. A collection of MD simulations of both the ligand-bound and the free receptor are needed to provide reliable conclusions. Variability in the trajectories needs quantification and proper statistical tools for meaningful and non-subjective conclusions. Multiple-factor (time, ligand, lipid) ANOVA with repeated measurements on the time factor is proposed as a suitable statistical method for the analysis of agonist-dependent GPCR activation MD simulations. Inclusion of time factor in the ANOVA model is consistent with the time-dependent nature of MD. Ligand and lipid factors measure agonist and lipid influence on receptor activation. Previously reported MD simulations of adenosine A2a receptor (A2aR) are reanalyzed with this statistical method. TM6-TM3 and TM7-TM3 distances are selected as dependent variables in the ANOVA model. The ligand factor includes the presence or absence of adenosine whereas the lipid factor considers DOPC or DOPG lipids. Statistical analysis of MD simulations shows the efficacy of adenosine and the effect of the membrane lipid composition. Subsequent application of the statistical methodology to NECA A2aR agonist, with resulting P values in consistency with its pharmacological profile, suggests that the method is useful for ligand comparison and potentially for dynamic structure-based virtual screening.


Assuntos
Agonistas do Receptor A2 de Adenosina/metabolismo , Adenosina/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica
2.
PLoS Comput Biol ; 16(4): e1007818, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32298258

RESUMO

The activation process of G protein-coupled receptors (GPCRs) has been extensively studied, both experimentally and computationally. In particular, Molecular Dynamics (MD) simulations have proven useful in exploring GPCR conformational space. The typical behaviour of class A GPCRs, when subjected to unbiased MD simulations from their crystallized inactive state, is to fluctuate between inactive and intermediate(s) conformations, even with bound agonist. Fully active conformation(s) are rarely stabilized unless a G protein is also bound. Despite several crystal structures of the adenosine A2a receptor (A2aR) having been resolved in complex with co-crystallized agonists and Gs protein, its agonist-mediated activation process is still not completely understood. In order to thoroughly examine the conformational landscape of A2aR activation, we performed unbiased microsecond-length MD simulations in quadruplicate, starting from the inactive conformation either in apo or with bound agonists: endogenous adenosine or synthetic NECA, embedded in two homogeneous phospholipid membranes: 1,2-dioleoyl-sn-glycerol-3-phosphoglycerol (DOPG) or 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). In DOPC with bound adenosine or NECA, we observe transition to an intermediate receptor conformation consistent with the known adenosine-bound crystal state. In apo state in DOPG, two different intermediate conformations are obtained. One is similar to that observed with bound adenosine in DOPC, while the other is closer to the active state but not yet fully active. Exclusively, in DOPG with bound adenosine or NECA, we reproducibly identify receptor conformations with fully active features, which are able to dock Gs protein. These different receptor conformations can be attributed to the action/absence of agonist and phospholipid-mediated allosteric effects on the intracellular side of the receptor.


Assuntos
Agonistas do Receptor A2 de Adenosina , Fosfolipídeos , Receptor A2A de Adenosina , Adenosina/química , Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Fosfatidilcolinas , Fosfatidilgliceróis , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Conformação Proteica , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo
3.
Sci Rep ; 8(1): 4456, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535353

RESUMO

Lipids are becoming known as essential allosteric modulators of G protein-coupled receptor (GPCRs). However, how they exert their effects on GPCR conformation at the atomic level is still unclear. In light of recent experimental data, we have performed several long-timescale molecular dynamics (MD) simulations, totalling 24 µs, to rigorously map allosteric modulation and conformational changes in the ß2 adrenergic receptor (ß2AR) that occur as a result of interactions with three different phospholipids. In particular, we identify different sequential mechanisms behind receptor activation and deactivation, respectively, mediated by specific lipid interactions with key receptor regions. We show that net negatively charged lipids stabilize an active-like state of ß2AR that is able to dock Gsα protein. Clustering of anionic lipids around the receptor with local distortion of membrane thickness is also apparent. On the other hand, net-neutral zwitterionic lipids inactivate the receptor, generating either fully inactive or intermediate states, with kinetics depending on lipid headgroup charge distribution and hydrophobicity. These chemical differences alter membrane thickness and density, which differentially destabilize the ß2AR active state through lateral compression effects.


Assuntos
Fosfolipídeos/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Regulação Alostérica , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA