Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(40): 16313-16319, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597515

RESUMO

Single-molecule measurements provide detailed mechanistic insights into molecular processes, for example in genome regulation where DNA access is controlled by nucleosomes and the chromatin machinery. However, real-time single-molecule observations of nuclear factors acting on defined chromatin substrates are challenging to perform quantitatively and reproducibly. Here we present XSCAN (multiplexed single-molecule detection of chromatin association), a method to parallelize single-molecule experiments by simultaneous imaging of a nucleosome library, where each nucleosome type carries an identifiable DNA sequence within its nucleosomal DNA. Parallel experiments are subsequently spatially decoded, via the detection of specific binding of dye-labeled DNA probes. We use this method to reveal how the Cas9 nuclease overcomes the nucleosome barrier when invading chromatinized DNA as a function of PAM position.


Assuntos
Nucleossomos
2.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31427381

RESUMO

KAP1 (KRAB domain-associated protein 1) plays a fundamental role in regulating gene expression in mammalian cells by recruiting different transcription factors and altering the chromatin state. In doing so, KAP1 acts both as a platform for macromolecular interactions and as an E3 small ubiquitin modifier ligase. This work sheds light on the overall organization of the full-length protein combining solution scattering data, integrative modeling, and single-molecule experiments. We show that KAP1 is an elongated antiparallel dimer with an asymmetry at the C-terminal domains. This conformation is consistent with the finding that the Really Interesting New Gene (RING) domain contributes to KAP1 auto-SUMOylation. Importantly, this intrinsic asymmetry has key functional implications for the KAP1 network of interactions, as the heterochromatin protein 1 (HP1) occupies only one of the two putative HP1 binding sites on the KAP1 dimer, resulting in an unexpected stoichiometry, even in the context of chromatin fibers.


Assuntos
Proteína 28 com Motivo Tripartido/metabolismo , Sítios de Ligação , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Regiões Promotoras Genéticas , Sumoilação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína 28 com Motivo Tripartido/genética
3.
Nat Commun ; 9(1): 235, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339721

RESUMO

The dynamic architecture of chromatin fibers, a key determinant of genome regulation, is poorly understood. Here, we employ multimodal single-molecule Förster resonance energy transfer studies to reveal structural states and their interconversion kinetics in chromatin fibers. We show that nucleosomes engage in short-lived (micro- to milliseconds) stacking interactions with one of their neighbors. This results in discrete tetranucleosome units with distinct interaction registers that interconvert within hundreds of milliseconds. Additionally, we find that dynamic chromatin architecture is modulated by the multivalent architectural protein heterochromatin protein 1α (HP1α), which engages methylated histone tails and thereby transiently stabilizes stacked nucleosomes. This compacted state nevertheless remains dynamic, exhibiting fluctuations on the timescale of HP1α residence times. Overall, this study reveals that exposure of internal DNA sites and nucleosome surfaces in chromatin fibers is governed by an intrinsic dynamic hierarchy from micro- to milliseconds, allowing the gene regulation machinery to access compact chromatin.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Nucleossomos/metabolismo , Animais , Cromatina/química , Cromatina/genética , Homólogo 5 da Proteína Cromobox , DNA/química , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Cinética , Metilação , Microscopia de Fluorescência , Conformação Molecular , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Ligação Proteica
4.
Nucleic Acids Res ; 45(18): 10504-10517, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985346

RESUMO

Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a family of multivalent effectors, heterochromatin protein 1 (HP1) proteins, using single-molecule fluorescence imaging and computational modeling. We show that the three human HP1 isoforms are recruited and retained on chromatin by a dynamic exchange between histone PTM and DNA bound states. These interactions depend on local chromatin structure, the HP1 isoforms as well as on PTMs on HP1 itself. Of the HP1 isoforms, HP1α exhibits the longest residence times and fastest binding rates due to DNA interactions in addition to PTM binding. HP1α phosphorylation further increases chromatin retention through strengthening of multivalency while reducing DNA binding. As DNA binding in combination with specific PTM recognition is found in many chromatin effectors, we propose a general dynamic capture mechanism for effector recruitment. Multiple weak protein and DNA interactions result in a multivalent interaction network that targets effectors to a specific chromatin modification state, where their activity is required.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Código das Histonas/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Homólogo 5 da Proteína Cromobox , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Cinética , Camundongos , Células NIH 3T3 , Fosforilação , Ligação Proteica , Imagem Individual de Molécula
6.
Nat Commun ; 6: 7313, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084584

RESUMO

Multivalent interactions between effector proteins and histone post-translational modifications are an elementary mechanism of dynamic chromatin signalling. Here we elucidate the mechanism how heterochromatin protein 1α (HP1α), a multivalent effector, is efficiently recruited to the silent chromatin state (marked by trimethylated H3 at Lys9, H3K9me3) while remaining highly dynamic. Employing chemically defined nucleosome arrays together with single-molecule total internal reflection fluorescence microscopy (smTIRFM), we demonstrate that the HP1α residence time on chromatin depends on the density of H3K9me3, as dissociated factors can rapidly rebind at neighbouring sites. Moreover, by chemically controlling HP1α dimerization we find that effector multivalency prolongs chromatin retention and, importantly, accelerates the association rate. This effect results from increased avidity together with strengthened nonspecific chromatin interactions of dimeric HP1α. We propose that accelerated chromatin binding is a key feature of effector multivalency, allowing for fast and efficient competition for binding sites in the crowded nuclear compartment.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Dimerização , Camundongos , Células NIH 3T3 , Processamento de Proteína Pós-Traducional
7.
J Aerosol Med Pulm Drug Deliv ; 28(1): 43-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24801912

RESUMO

BACKGROUND: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. METHODS: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). RESULTS: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. CONCLUSIONS: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics.


Assuntos
Hematínicos/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Nebulizadores e Vaporizadores , Administração por Inalação , Aerossóis , Hematínicos/química , Modelos Lineares , Nanopartículas de Magnetita/química , Movimento (Física) , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA