RESUMO
The transfer of dissolved organic carbon (DOC) from land to watercourses plays a major role in the carbon cycle, and in the transport and fate of associated organic and inorganic contaminants. We investigated, at global scale, how the concentrations and properties of riverine DOC depend upon combinations of terrestrial source solutions. For topsoil, subsoil, groundwater and river solutions in different Köppen-Geiger climatic zones, we compiled published and new values of DOC concentration ([DOC]), radiocarbon signature (DO14C), and specific UV absorbance (SUVA). The average value of each DOC variable decreased significantly in magnitude from topsoil to subsoil to groundwater, permitting the terrestrial sources to be distinguished. We used the terrestrial data to simulate the riverine distributions of each variable, and also relationships between pairs of variables. To achieve good matches between observed and simulated data, it was necessary to optimise the distributions of water fractions contributed by each of the three terrestrial sources, and also to reduce the mean input terrestrial [DOC] values, to about 60% of the measured ones. One possible explanation for the required lowering of the modelled terrestrial [DOC] values might be unrepresentative sampling of terrestrial DOC, including dilution effects; another is the loss of DOC during riverine transport. High variations in simulated riverine DOC variables, which match observed data, are due predominantly to variations in source solution values, with a lesser contribution from the different combinations of source waters. On average, most DOC in rivers draining catchments with forest and/or grass-shrub land cover comes in similar amounts from topsoil and subsoil, with about 10% from groundwater. In rivers draining croplands, subsoil and groundwater solutions are the likely dominant DOC sources, while in wetland rivers most DOC is from topsoil.
Assuntos
Matéria Orgânica Dissolvida , Monitoramento Ambiental , Carbono/análise , Ciclo do Carbono , RiosRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
RESUMO
Climatic change is widely acknowledged to have played a role in the dispersal of modern humans out of Africa, but the timing is contentious. Genetic evidence links dispersal to climatic change ~60,000 years ago, despite increasing evidence for earlier modern human presence in Asia. We report a deep seismic and near-continuous core record of the last 150,000 years from Lake Tana, Ethiopia, close to early modern human fossil sites and to postulated dispersal routes. The record shows varied climate towards the end of the penultimate glacial, followed by an abrupt change to relatively stable moist climate during the last interglacial. These conditions could have favoured selection for behavioural versatility, population growth and range expansion, supporting models of early, multiple dispersals of modern humans from Africa.
Assuntos
Evolução Biológica , Clima , Paleontologia , África , Mudança Climática , Etiópia , HumanosRESUMO
The Younger Dryas Stadial (YDS) was an episode of northern hemispheric cooling which occurred within the Last Glacial Interglacial Transition (LGIT). A major driver for the YDS climate was a weakening of the Atlantic Meridional Overturning Circulation (AMOC). It has been inferred that the AMOC began to strengthen mid-YDS, producing a bipartite structure of the YDS in records from continental Europe. These records imply that the polar front and westerlies shifted northward, producing a warmer second phase of the YDS in Europe. Here we present multi-proxy data from the sediments of Lake Suigetsu (Japan), as evidence that a related bi-partition of the YDS also occurred in East Asia. Besides showing for the first time that the bi-partition was not limited to the North Atlantic/European region, the data also imply a climatic dipole between Europe and East Asia since the cold-warm characteristics are reversed at Lake Suigetsu. We suggest that changes in eastward moisture transport from the North Atlantic are the primary mechanism by which the teleconnection can be explained.
RESUMO
In this paper we report new data on peat carbon (C), nitrogen (N) and phosphorus (P) concentrations and accumulation rates for 15 sites in the UK. Concentrations of C, N and P measured in peat from five ombrotrophic blanket mires, spanning 4000-10,000years to present were combined with existing nutrient data from ten Scottish ombrotrophic peat bogs to provide the first UK perspective on millennial scale macronutrient concentrations in ombrotrophic peats. Long-term average C, N and P concentrations (0-1.25m) for the UK are 54.8, 1.56 and 0.039wt%, of similar magnitude to the few published comparable sites worldwide. The uppermost peat (0-0.2m) is enriched in P and N (51.0, 1.86, and 0.070wt%) relative to the deeper peat (0.5-1.25m, 56.3, 1.39, and 0.027wt%). Long-term average (whole core) accumulation rates of C, N and P are 25.3±2.2gCm-2year-1 (mean±SE), 0.70±0.09gNm-2year-1 and 0.018±0.004gPm-2year-1, again similar to values reported elsewhere in the world. The two most significant findings are: 1) that a regression model of N concentration on P concentration and mean annual precipitation, based on global meta data for surface peat samples, can explain 54% of variance in N concentration in these UK peat profiles; and 2) budget calculations for the UK peat cores yield an estimate for long-term average N-fixation of 0.8gm-2year-1. Our UK results, and comparison with others sites, corroborate published estimates of N storage in northern boreal peatlands through the Holocene as ranging between 8 and 15Pg N. However, the observed correlation of N% with both mean annual precipitation and P concentration allows a potential bias in global estimates that do not take this into account. The peat sampling data set has been deposited at the NERC Data Centre (Toberman et al., 2016).
RESUMO
The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO14C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO14C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO14C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO14C in rivers draining catchments with low erosion rates.
Assuntos
Carbono/análise , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Material Particulado/análiseRESUMO
Radiocarbon ((14)C) provides a way to date material that contains carbon with an age up to ~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of a comprehensive record reflecting atmospheric (14)C prior to 12.5 thousand years before the present (kyr B.P.) has limited the application of radiocarbon dating of samples from the Last Glacial period. Here, we report (14)C results from Lake Suigetsu, Japan (35°35'N, 135°53'E), which provide a comprehensive record of terrestrial radiocarbon to the present limit of the (14)C method. The time scale we present in this work allows direct comparison of Lake Suigetsu paleoclimatic data with other terrestrial climatic records and gives information on the connection between global atmospheric and regional marine radiocarbon levels.