Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142407

RESUMO

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.


Assuntos
Ambystoma mexicanum/fisiologia , Extremidades/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Regeneração/fisiologia , Animais , Ciclo Celular/fisiologia , Dano ao DNA , Reparo do DNA/fisiologia , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética
2.
Nat Commun ; 9(1): 5153, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514844

RESUMO

Regeneration of complex multi-tissue structures, such as limbs, requires the coordinated effort of multiple cell types. In axolotl limb regeneration, the wound epidermis and blastema have been extensively studied via histology, grafting, and bulk-tissue RNA-sequencing. However, defining the contributions of these tissues is hindered due to limited information regarding the molecular identity of the cell types in regenerating limbs. Here we report unbiased single-cell RNA-sequencing on over 25,000 cells from axolotl limbs and identify a plethora of cellular diversity within epidermal, mesenchymal, and hematopoietic lineages in homeostatic and regenerating limbs. We identify regeneration-induced genes, develop putative trajectories for blastema cell differentiation, and propose the molecular identity of fibroblast-like blastema progenitor cells. This work will enable application of molecular techniques to assess the contribution of these populations to limb regeneration. Overall, these data allow for establishment of a putative framework for adult axolotl limb regeneration.


Assuntos
Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regeneração , Transcriptoma , Ambystoma mexicanum/genética , Ambystoma mexicanum/fisiologia , Experimentação Animal , Animais , Diferenciação Celular , Linhagem da Célula , Células Epidérmicas , Epiderme/patologia , Epiderme/fisiologia , Extremidades/embriologia , Extremidades/patologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema Imunitário/fisiologia , Hibridização In Situ , Macrófagos , Células-Tronco Mesenquimais , Células Mieloides/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Regeneração/genética , Análise de Sequência de RNA , Células-Tronco/citologia , Células-Tronco/fisiologia
3.
Circulation ; 137(20): 2152-2165, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29348261

RESUMO

BACKGROUND: Defining conserved molecular pathways in animal models of successful cardiac regeneration could yield insight into why adult mammals have inadequate cardiac regeneration after injury. Insight into the transcriptomic landscape of early cardiac regeneration from model organisms will shed light on evolutionarily conserved pathways in successful cardiac regeneration. METHODS: Here we describe a cross-species transcriptomic screen in 3 model organisms for cardiac regeneration: axolotl, neonatal mice, and zebrafish. Apical resection to remove ≈10% to 20% of ventricular mass was carried out in these model organisms. RNA-sequencing analysis was performed on the hearts harvested at 3 time points: 12, 24, and 48 hours after resection. Sham surgery was used as internal control. RESULTS: Genes associated with inflammatory processes were found to be upregulated in a conserved manner. Complement receptors (activated by complement components, part of the innate immune system) were found to be highly upregulated in all 3 species. This approach revealed induction of gene expression for complement 5a receptor 1 in the regenerating hearts of zebrafish, axolotls, and mice. Inhibition of complement 5a receptor 1 significantly attenuated the cardiomyocyte proliferative response to heart injury in all 3 species. Furthermore, after left ventricular apical resection, the cardiomyocyte proliferative response was diminished in mice with genetic deletion of complement 5a receptor 1. CONCLUSIONS: These data reveal that activation of complement 5a receptor 1 mediates an evolutionarily conserved response that promotes cardiomyocyte proliferation after cardiac injury and identify complement pathway activation as a common pathway of successful heart regeneration.


Assuntos
Evolução Molecular , Coração/fisiologia , Receptor da Anafilatoxina C5a/metabolismo , Regeneração/fisiologia , Ambystoma mexicanum , Animais , Animais Recém-Nascidos , Proliferação de Células , Perfilação da Expressão Gênica , Ontologia Genética , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/farmacologia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/genética , Análise de Sequência de RNA , Troponina T/análise , Peixe-Zebra
4.
J Vis Exp ; (124)2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28654050

RESUMO

Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.


Assuntos
Ambystoma mexicanum/anatomia & histologia , Vasos Sanguíneos/anatomia & histologia , Carbocianinas/química , Corantes/química , Imagem de Perfusão/métodos , Animais , Microscopia Confocal , Microscopia de Fluorescência , Perfusão , Imagem de Perfusão/instrumentação
5.
Dev Biol ; 424(1): 1-9, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235582

RESUMO

Matching appendage size to body size is fundamental to animal function. Generating an appropriately-sized appendage is a robust process executed during development which is also critical for regeneration. When challenged, larger animals are programmed to regenerate larger limbs than smaller animals within a single species. Understanding this process has important implications for regenerative medicine. To approach this complex question, models with altered appendage size:body size ratios are required. We hypothesized that repeatedly challenging axolotls to regrow limb buds would affect their developmental program resulting in altered target morphology. We discovered that after 10 months following this experimental procedure, limbs that developed were permanently miniaturized. This altered target morphology was preserved upon amputation and regeneration. Future experiments using this platform should provide critical information about how target limb size is encoded within limb progenitors.


Assuntos
Ambystoma mexicanum/embriologia , Amputação Cirúrgica , Botões de Extremidades/embriologia , Botões de Extremidades/patologia , Animais , Ectromelia/patologia , Botões de Extremidades/anormalidades , Botões de Extremidades/inervação , Tecido Nervoso/patologia , Tamanho do Órgão , Regeneração
6.
Cell Rep ; 18(3): 762-776, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099853

RESUMO

Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.


Assuntos
Extremidades/fisiologia , Transcriptoma , Ambystoma mexicanum , Animais , Hibridização In Situ , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/antagonistas & inibidores , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , RNA/química , RNA/metabolismo , Interferência de RNA , Splicing de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regeneração , Análise de Sequência de RNA
7.
NPJ Regen Med ; 2: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302364

RESUMO

Axolotl salamanders are powerful models for understanding how regeneration of complex body parts can be achieved, whereas mammals are severely limited in this ability. Factors that promote normal axolotl regeneration can be examined in mammals to determine if they exhibit altered activity in this context. Furthermore, factors prohibiting axolotl regeneration can offer key insight into the mechanisms present in regeneration-incompetent species. We sought to determine if we could experimentally compromise the axolotl's ability to regenerate limbs and, if so, discover the molecular changes that might underlie their inability to regenerate. We found that repeated limb amputation severely compromised axolotls' ability to initiate limb regeneration. Using RNA-seq, we observed that a majority of differentially expressed transcripts were hyperactivated in limbs compromised by repeated amputation, suggesting that mis-regulation of these genes antagonizes regeneration. To confirm our findings, we additionally assayed the role of amphiregulin, an EGF-like ligand, which is aberrantly upregulated in compromised animals. During normal limb regeneration, amphiregulin is expressed by the early wound epidermis, and mis-expressing this factor lead to thickened wound epithelium, delayed initiation of regeneration, and severe regenerative defects. Collectively, our results suggest that repeatedly amputated limbs may undergo a persistent wound healing response, which interferes with their ability to initiate the regenerative program. These findings have important implications for human regenerative medicine.

8.
Development ; 143(15): 2724-31, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317805

RESUMO

The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration.


Assuntos
Ambystoma mexicanum/metabolismo , Regeneração Nervosa/fisiologia , Neuregulina-1/metabolismo , Ambystoma mexicanum/fisiologia , Animais , Western Blotting , Extremidades/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/genética , Neuregulina-1/genética , Oxazóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Triazóis/farmacologia
9.
Dev Cell ; 34(4): 387-99, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26256209

RESUMO

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Assuntos
Neurônios Colinérgicos/fisiologia , Coração/inervação , Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Denervação , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética , Inflamação/genética , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Fator de Crescimento Neural/farmacologia , Neuregulina-1/farmacologia , Regeneração/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vagotomia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA