Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(16): 11711-11719, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152749

RESUMO

Tailoring the pore environments of metal-organic frameworks (MOFs) is key to improving their performance and expanding their applicability. Postsynthetic methods, wherein an already synthesized MOF undergoes further chemical reactions, present many advantages for such tailoring and lead to much interesting new chemistry. However, this method has seldom been pushed farther than two reaction steps on the organic component. Here we report a three-step sequence starting from an alkenyl group on the biphenyl backbone of an IRMOF-9 analogue. The alkene is converted to an oxirane group and subsequently to a 1,2-azidoalcohol. The ultimate product is a framework functionalized with an aziridine ring. The reaction efficiency of each step is high, which suppresses the formation of undesired functional groups and the buildup of unintended multivariate frameworks. The synthesis of each framework was attempted via a direct synthetic method employing the appropriately functionalized biphenyldicarboxylate ligand. In general, this met with failure, which demonstrates the power and utility of postsynthetic methods for preparing new materials.

2.
Dalton Trans ; 49(16): 5167-5174, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32236275

RESUMO

Iodinated analogues of the highly porous IRMOF-9 and UiO-67 frameworks were prepared and post-synthetically oxidised with dimethyldioxirane (DMDO). Analysis by X-ray photoelectron spectroscopy (XPS) confirmed promotion to the iodine(v) state and detailed differential scanning calorimetry-thermal gravimetric analysis (DSC-TGA) showed the hypervalent metal-organic frameworks (MOFs) undergo exothermic elimination at ∼200 °C with XPS showing hypervalency is maintained. The hypervalent MOFs are active heterogeneous reagents in sulfoxidation and alcohol oxidation reactions. The crystallinity and porosity of the MOFs were maintained following post-synthetic oxidation, thermolysis and after the heterogeneous reactions, as shown by powder X-ray diffraction (PXRD) and gas adsorption analyses. This work showcases the unique ability MOFs hold for studying chemical reactions and the potential for hypervalent organoiodine MOFs as reuseable oxidants.

3.
Dalton Trans ; 44(19): 9269-80, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25913411

RESUMO

The synthesis, structural and thermal characterisation of a number of coordination complexes featuring the N,O-heteroditopic ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate, HL are reported. The reaction of H2L with cobalt(II) and nickel(II) nitrates at room temperature in basic DMF/H2O solution gave discrete mononuclear coordination complexes with the general formula {[M(HL)2(H2O)4]·2DMF} (M = Co (1), Ni (2)), whereas the reaction with zinc(II) nitrate gave [Zn(HL)2]∞, 3, a coordination polymer with distorted diamondoid topology and fourfold interpenetration. Coordination about the tetrahedral Zn(II) nodes in 3 are furnished by two pyrazolyl nitrogen atoms and two carboxylate oxygen atoms to give a mixed N2O2 donor set. Isotopological coordination polymers of zinc(II), {[Zn(HL)2]·2CH3OH·H2O}∞, 4, and cobalt(II), [Co(HL)2]∞, 5, are formed when the reactions are carried out under solvothermal conditions in methanol (80 °C) and water (180 °C), respectively. The reaction of H2L with cadmium(II) nitrate at room temperature in methanol gives {[Cd(HL)2(MeOH)2]·1.8MeOH}∞6, a 2-D (4,4)-connected coordination polymer, whereas with copper(II) the formation of green crystals that transform into purple crystals is observed. The metastable green phase [Cu3(HL)4(µ2-SO4)(H2O)3]∞, 7, crystallises with conserved binding domains of the heteroditopic ligand and contains two different metal nodes: a dicopper carboxylate paddle wheel motif, and, a dicopper unit bridged by sulfate ions and coordinated by ligand pyrazolyl nitrogen atoms. The resultant purple phase {[Cu(HL)2]·4CH3OH·H2O}∞, 8, however, has single copper ion nodes coordinated by mixed N2O2 donor sets with trans-square planar geometry and is threefold interpenetrated. The desolvation of 8 was followed by powder X-ray diffraction and single crystal X-ray diffraction which show desolvation induces the transition to a more closely packed structure while the coordination geometry about the copper ions and the network topology is retained. Powder X-ray diffraction and microanalysis were used to characterise the bulk purity of the coordination materials 1­6 and 8. The thermal characteristics of 1­2, 4­6 and 8 were studied by TG-DTA. This led to the curious observation of small exothermic events in networks 4, 6, and 8 that appear to be linked to their decomposition. In addition, the solid state structures of H2L and that of its protonated salt, H2L·HNO3, were also determined and revealed that H2L forms a 2-D hydrogen bonded polymer incorporating helical chains formed through N­HO and O­HN interactions, and that [H3L]NO3 forms a 1-D hydrogen-bonded polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA