Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 95: 428-439, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573267

RESUMO

Selective Laser Melting (SLM) is a powder-bed-based additive manufacturing method, using a laser beam, which can be used to produce metallic scaffolds for bone regeneration. However, this process also has a few disadvantages. One of its drawbacks is the necessity of post-processing in order to improve the surface finish. Another drawback lies in the removal of unmelted powder particles from the build. In this study, the influence of chemical polishing of SLM fabricated titanium scaffolds on their mechanical strength and in vitro cellular response was investigated. Scaffolds with bimodal pore size (200 µm core and 500 µm shell) were fabricated by SLM from commercially pure titanium powder and then chemically treated in HF/HNO3 solutions to remove unmelted powder particles. The cell viability and mechanical strength were compared between as-made and chemically-treated scaffolds. The chemical treatment was successful in the removal of unmelted powder particles from the titanium scaffold. The Young's modulus of the fabricated cellular structures was of 42.7 and 13.3 GPa for as-made and chemically-treated scaffolds respectively. These values are very similar to the Young's modulus of living human bone. Chemical treatment did not affect negatively cell proliferation and differentiation. Additionally, the chemically-treated scaffolds had a twofold increase in colonization of osteoblast cells migrating out of multicellular spheroids. Furthermore, X-ray computed microtomography confirmed that chemically-treated scaffolds met the dimensions originally set in the CAD models. Therefore, chemical-treatment can be used as a tool to cancel the discrepancies between the designed and fabricated objects, thus enabling fabrication of finer structures with regular struts and high resolution.


Assuntos
Alicerces Teciduais/química , Titânio/química , Linhagem Celular Tumoral , Módulo de Elasticidade , Humanos , Ácido Fluorídrico/farmacologia , Ácido Nítrico/farmacologia
2.
Materials (Basel) ; 9(3)2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28773323

RESUMO

Nowadays, post-surgical or post-accidental bone loss can be substituted by custom-made scaffolds fabricated by additive manufacturing (AM) methods from metallic powders. However, the partially melted powder particles must be removed in a post-process chemical treatment. The aim of this study was to investigate the effect of the chemical polishing with various acid baths on novel scaffolds' morphology, porosity and mechanical properties. In the first stage, Magics software (Materialise NV, Leuven, Belgium) was used to design a porous scaffolds with pore size equal to (A) 200 µm, (B) 500 µm and (C) 200 + 500 µm, and diamond cell structure. The scaffolds were fabricated from commercially pure titanium powder (CP Ti) using a SLM50 3D printing machine (Realizer GmbH, Borchen, Germany). The selective laser melting (SLM) process was optimized and the laser beam energy density in range of 91-151 J/mm³ was applied to receive 3D structures with fully dense struts. To remove not fully melted titanium particles the scaffolds were chemically polished using various HF and HF-HNO3 acid solutions. Based on scaffolds mass loss and scanning electron (SEM) observations, baths which provided most uniform surface cleaning were proposed for each porosity. The pore and strut size after chemical treatments was calculated based on the micro-computed tomography (µ-CT) and SEM images. The mechanical tests showed that the treated scaffolds had Young's modulus close to that of compact bone. Additionally, the effect of pore size of chemically polished scaffolds on cell retention, proliferation and differentiation was studied using human mesenchymal stem cells. Small pores yielded higher cell retention within the scaffolds, which then affected their growth. This shows that in vitro cell performance can be controlled to certain extent by varying pore sizes.

3.
J Mater Sci Mater Med ; 26(3): 143, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737128

RESUMO

In the hereby presented work the authors describe a technique of high-compression-resistant biodegradable bone scaffold preparation. The methodology is based on the agglomeration of chitosan (CH) and chitosan/ß-tricalcium phosphate (CH/TCP) microspheres and represents a novel approach to 3D matrices design for bone tissue engineering application. The materials were prepared from high deacetylation degree chitosan. The authors describe the method for scaffold fabrication, essential properties of the materials manufactured and the influence of various TCP concentrations on material morphology, mechanical properties (for dry and hydrated materials) and preliminary study on the interaction between CH or CH/TCP scaffolds and within cultured MG-63 osteoblast-like cells. The properties of the obtained materials were significantly affected by the calcium phosphate content, which had a particular influence on the granule microstructure, size distribution and inner biomaterial pore size. The water uptake ability was found to be lower for the materials enriched with the inorganic phase and tended to decrease with the increasing calcium phosphate concentration. The evaluation of mechanical properties has revealed that scaffolds produced with the usage of granule-based technology display a potential to be used as a load-bearing material since the Young's modulus values were limited to the range of 200-500 MPa for dry materials and 15-20 MPa for the hydrated state of the scaffolds. The cell number, identified in three time points (48 h, 7 and 14 days) by Pico Green assay, was lower for the materials enriched with inorganic phase (75 % of control), however cell distribution, when compared to CH only biomaterial, was acknowledged as steadier on the surface of the material containing the highest calcium phosphate concentration.


Assuntos
Osso e Ossos , Fosfatos de Cálcio/análise , Quitosana/química , Microesferas , Engenharia Tecidual , Alicerces Teciduais , Linhagem Celular Tumoral , Humanos
4.
J Biomed Mater Res A ; 101(1): 138-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22825840

RESUMO

This paper is concerned with reliable and physically sound elasticity determination of rapid-prototyped tissue engineering scaffolds made of poly-L-lactide (PLLA), with and without small portions of tricalcium phosphate (TCP) inclusions. At the level of overall scaffolds, that is, that of several millimeters, multiple uniaxial loading-unloading (quasistatic) tests were performed, giving access to the scaffolds' Young's moduli, through stress-strain characteristics during unloading. In addition, acoustic tests with 0.05 MHz frequency delivered an independent access to elastic properties, in terms of the normal components of the scaffolds' stiffness tensors. The latter strongly correlate, in a linear fashion, with the Young's moduli from the unloading tests, revealing porosity independence of Poisson's ratio. The magnitude of the latter is in full agreement with literature data on polymers. Both of these facts underline that both ultrasound tests and quasistatic unloading tests reliably provide the elastic properties of tissue engineering scaffolds.


Assuntos
Acústica , Elasticidade , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Fosfatos de Cálcio , Módulo de Elasticidade , Porosidade
5.
Acta Bioeng Biomech ; 14(1): 39-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22742431

RESUMO

Alloplastic bone substitute materials are raising some more interest as an alternative for autologic transplants and xenogenic materials especially in oral surgery over the last few years. These non-immunogenic and completely resorbable biomaterials are the basis for complete and predictable guided bone regeneration. In the majority of cases, such a material is chosen because of its convenient application by surgeons. The main objective of our project was to design and fabricate an osteoconductive, injectable and readily tolerable by human tissues biomaterial for guided bone regeneration. For this purpose, a self-setting composite consisting of chitosan/tricalcium phosphate microparticles and sodium alginate was made. The material obtained was characterized by microsphere and agglomerate morphology and microstructure. Its features relating to setting time and mechanical properties were precisely investigated. Our material was also evaluated according to PN-EN ISO 10993 Biological evaluation of medical devices, i.e., the in vitro tests for genotoxicity and cytotoxicity were conduced. Then, the following examinations were performed: subchronic systemic toxicity, skin sensitization, irritation and delayed-type hypersensitivity and local effects after implantation. The material tested showed a high degree of cytocompatibility, fulfilled the requirements of International Standards and seemed to be a "user friendly" material for oral surgeons.


Assuntos
Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/síntese química , Substitutos Ósseos/farmacologia , Teste de Materiais/métodos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Cloreto de Cálcio/farmacologia , Fosfatos de Cálcio/farmacologia , Quitosana/farmacologia , Humanos , Injeções , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Implantação de Prótese , Ratos , Ratos Wistar , Fatores de Tempo
6.
J Biomech ; 44(3): 501-8, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20883995

RESUMO

In the 1920s and 1930s, Terzaghi and coworkers realized that the failure of various porous geomaterials under internal pore pressure is given through evaluating the failure function for the same materials at zero pressure, with 'total stress plus pore pressure' instead of 'total stress alone' as argument. As to check, probably for the first time, the relevance of this ('Terzaghi's') failure criterion for trabecular bone, a series of poromechanical and ultrasonic tests was conducted on bovine and human trabecular bone samples. Evaluation of respective experimental results within the theoretical framework of microporomechanics showed that (i) Terzaghi's effective stress indeed governs trabecular bone failure, (ii) deviatoric stress states at the level of the solid bone matrix (also called tissue level) are primary candidates for initiating bone failure, and (iii) the high heterogeneity of these deviatoric tissue stresses, which increases with increasing intertrabecular porosity, governs the overall failure of trabecular bone. Result (i) lets us use the widely documented experimental results for strength values of bone samples without pore pressure, as to predict failure of the same bone samples under internal pore pressure. Result (ii) suggests a favorable mode for strength modeling of solid bone matrix. Finally, result (iii) underlines the suitability of microfinite element simulations for trabecular bone microstructures.


Assuntos
Osso e Ossos/fisiologia , Animais , Osso e Ossos/diagnóstico por imagem , Bovinos , Análise de Elementos Finitos , Humanos , Modelos Lineares , Estresse Mecânico , Resistência à Tração , Tíbia/fisiologia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA