Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 39(16): 3354-3366, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32103167

RESUMO

Multiple myeloma (MM) is a clinically and biologically heterogenous event that accounts for approximately 10% of all hematological malignancies. Chromosome 1 open reading frame 35 (C1orf35) is a gene cloned and identified in our laboratory from a MM cell line (GenBank: AY137773), but little is known about its function. In the current study, we have confirmed that C1orf35 is a candidate oncogene, and it can promote cell cycle progression from G1 to S. Later, we found that C1orf35 is able to affect the cell proliferation by modulating the expression of c-MYC (v-myc myelocytomatosis viral oncogene homolog), and the oncogenic property of C1orf35 can be rescued by c-MYC inhibition. Herein, we found positive association between C1orf35 and c-MYC in MM patients and in MM cell lines. The correlation analysis of the genes coamplified in MM patients from GEO datasets showed a correlation between C1orf35 and c-MYC, and the expression data of different stages of plasma cell neoplasm acquired from GEO datasets showed that the expression of C1orf35 increase with the progression of the disease. This indicates that C1orf35 may play a role in the disease progression. Moreover, C1orf35 can modulate c-MYC expression and rescue c-MYC transcription inhibited by Act D. Finally, we have shown that C1orf35 activates c-MYC transcription by binding to the i-motif of Nuclease hypersensitivity element III1 (NHE III1) in the c-MYC promoter. Not only does our current study advance our knowledge of the pathogenesis and therapeutic landscape of MM, but also of other cancer types and diseases that are initiated with deregulated c-MYC transcription.


Assuntos
Carcinogênese/genética , Mieloma Múltiplo/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Transcrição Gênica/genética , Ativação Transcricional/genética
2.
Cell Signal ; 60: 136-145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034872

RESUMO

Multiple myeloma (MM) is hematological malignancy characterized by clonal proliferation of malignant plasma cells in the bone marrow environment. Previously, we identified DAZAP2 as a candidate cancer suppressor gene, the downregulation of which is regulated by its own promoter methylation status. In the current study, we analyzed the DAZAP2 promoter in MM cell lines KM3, MM.1S, OPM-2, and ARH77 by bisulfite genomic sequencing assay. We identified the binding site for transcription factor cyclic adenosine monophosphate response element binding (CREB) in the DAZAP2 promoter CpG2, and we found that hypermethylation of the CREB binding motif in the DAZAP2 promoter is responsible for the reduced DAZAP2 expression in MM cells. Later we checked the p38/MAPK signaling cascade, which is reported to regulate expression and function of CREB. Our results showed that the p38/MAPK signaling pathway drives the expression of DAZAP2 by phosphorylation of CREB, and hypermethylation of CREB binding motif in DAZAP2 promoter can inhibit binding of CREB to the latter, thus downregulating DAZAP2 expression. Moreover, treating the MM cells with 5-aza-2' deoxycytidine to demethylate DAZAP2 promoter restored the binding of CREB to its binding motif, and thus upregulated DAZAP2 expression. Our results not only identified DAZAP2 as a new downstream target of p38/MAPK/CREB signaling cascade, but we also clarified that the downregulation of DAZAP2 in MM cells is caused by hypermethylation of CREB binding motif in its own promoter region, which implies that demethylation of DAZAP2 promoter can be a novel therapeutic strategy for MM treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Mieloma Múltiplo/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA