Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biofabrication ; 15(3)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37019117

RESUMO

Refractive disorder is the most prevalent cause of visual impairment worldwide. While treatment of refractive errors can bring improvement to quality of life and socio-economic benefits, there is a need for individualization, precision, convenience, and safety with the chosen method. Herein, we propose using pre-designed refractive lenticules based on poly-NAGA-GelMA (PNG) bio-inks photo-initiated by digital light processing (DLP)-bioprinting for correcting refractive errors. DLP-bioprinting allows PNG lenticules to have individualized physical dimensions with precision achievable to 10µm (µm). Material characteristics of PNG lenticules in tests included optical and biomechanical stability, biomimetical swelling and hydrophilic capability, nutritional and visual functionality, supporting its suitability as stromal implants. Cytocompatibility distinguished by morphology and function of corneal epithelial, stromal, and endothelial cells on PNG lenticules suggested firm adhesion, over 90% viability, phenotypic maintenance instead of excessive keratocyte-myofibroblast transformation.In-vitroimmune response analyzed by illumina RNA sequencing in human peripheral blood mononuclear cells indicated that PNG lenticules activated type-2 immunity, facilitating tissue regeneration and suppressing inflammation.In-vivoperformance assessed using intrastromal keratoplasty models in New Zealand white rabbits illustrated that implantation of PNG lenticules maintained stable optical pathway, induced controlled stromal bio-integration and regeneration, avoided complications such as stromal melt, interface scarring, etc, but exerted no adverse effects on the host. Postoperative follow-up examination on intraocular pressure, corneal sensitivity, and tear production remained unaffected by surgery up to 1-month post-implantation of PNG lenticules. DLP-bioprinted PNG lenticule is a bio-safe and functionally effective stromal implants with customizable physical dimensions, providing potential therapeutic strategies in correction of refractive errors.


Assuntos
Cirurgia da Córnea a Laser , Erros de Refração , Humanos , Animais , Coelhos , Hidrogéis , Células Endoteliais , Leucócitos Mononucleares , Qualidade de Vida , Cirurgia da Córnea a Laser/métodos
2.
Front Immunol ; 14: 1063069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798135

RESUMO

Purpose: We aim to investigate the effect of sustained hyperglycemia on corneal epithelial wound healing, ocular surface and systemic immune response, and microbiome indices in diabetic mice compared to controls after alkaline chemical injury of the eye. Methods: Corneal alkaline injury was induced in the right eye of Ins2Akita (Akita) mice and wild-type mice. The groups were observed at baseline and subsequently days 0, 3, and 7 after injury. Corneal re-epithelialization was observed under slit lamp with fluorescein staining using a cobalt blue light filter. Enucleated cornea specimens were compared at baseline and after injury for changes in cornea thickness under hematoxylin and eosin staining. Tear cytokine and growth factor levels were measured using protein microarray assay and compared between groups and time points. Flow cytometry was conducted on peripheral blood and ocular surface samples to determine CD3+CD4+ cell count. Fecal samples were collected, and gut microbiota composition and diversity pattern were measured using shotgun sequencing. Results: Akita mice had significantly delayed corneal wound healing compared to controls. This was associated with a reduction in tear levels of vascular endothelial growth factor A, angiopoietin 2, and insulin growth factor 1 on days 0, 3, and 7 after injury. Furthermore, there was a distinct lack of upregulation of peripheral blood and ocular surface CD3+CD4+ cell counts in response to injury in Akita mice compared to controls. This was associated with a reduction in intestinal microbiome diversity indices in Akita mice compared to controls after injury. Specifically, there was a lower abundance of Firmicutes bacterium M10-2 in Akita mice compared to controls after injury. Conclusion: In diabetic mice, impaired cornea wound healing was associated with an inability to mount systemic and local immune response to ocular chemical injury. Baseline and post-injury differences in intestinal microbial diversity and abundance patterns between diabetic mice and controls may potentially play a role in this altered response.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Diabetes Mellitus Experimental/complicações , Córnea , Lesões da Córnea/complicações , Cicatrização
3.
Exp Eye Res ; 221: 109151, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714698

RESUMO

Chemical injury of the cornea results in epithelial defect and subsequent stromal scarring and infection. Our study aims to evaluate the effectiveness of pre-treatment of Lycium barbarum polysaccharide (LBP) in promoting corneal re-epithelialization after alkaline burn. The corneas of C57BL/6J mice were pre-treated with topical phosphate-buffered saline or LBP (0.2/2/20 mg/mL) for 7 days, following by 0.1M sodium hydroxide injury for 30 s and washing with distilled water for another 30 s. Area of epithelial defect and thickness of cornea were evaluated. Inflammatory cytokines and water channel expression levels were assessed using immunohistochemistry and Western blot. Compared to the injury group, mice with 2 mg/mL LBP pre-treatment revealed a significant decrease in fluorescein stained area after injury (p = 0.025), with increased epithelial layer thickness (p = 0.004). The corneal opacity was significantly reduced in the group with 2 mg/mL LBP pre-treatment followed by injury (p = 0.02). The expression of matrix metalloproteinase 12 (p = 0.033), platelet derived growth factor-BB (p = 0.031), and aquaporin 5 (p = 0.022) resulted in a decrease in expression level in group with 2 mg/mL LBP pre-treatment. Our results showed that 2 mg/mL LBP, with no apoptotic effect on corneal cells, promoted corneal epithelial growth and minimized disruption of the collagen architecture after injury in vivo. We suggest that LBP, as a natural Traditional Chinese Medicine, may potentially be a novel topical pre-treatment option for patients highly susceptible to ocular injury.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Animais , Córnea , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Reepitelização
4.
Exp Eye Res ; 220: 109099, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508213

RESUMO

Diabetes Mellitus (DM) is a chronic metabolic disorder characterized by sustained hyperglycemia, potentially leading to life-threatening health problems. While the complication of diabetic retinopathy has been extensively studied, less attention has been given to the impact of diabetes on ocular surface health. In fact diabetic keratopathy is potentially sight-threatening and may also provide diagnostic and management cues for other diabetic systemic complications. In this review, we provide an overview of the recent understanding of diabetic ocular surface disease, including neuropathy, dry eye, and other morphological changes of the cornea. Additionally, we will touch on several areas that have been covered less in published literature. This includes ocular surface complications in pre-diabetic states and differences in ocular surface disease between human diabetics and animal models of diabetes. Recent advances in experimental models of diabetic ocular surface complications are highlighted. The latest methods for diagnosis, management, and monitoring of DM-related ocular surface disease are also evaluated. Specifically, the advantages and limitations of cornea in vivo confocal microscopy, as well as its accessibility and potential alternatives are discussed. Additionally, future directions for research are described based on findings with promising clinical value. This includes the emergence of protein microarray technology that may be potentially applied to the diagnosis and management of diabetic ocular surface disease.


Assuntos
Doenças da Córnea , Diabetes Mellitus , Retinopatia Diabética , Síndromes do Olho Seco , Animais , Córnea , Doenças da Córnea/epidemiologia , Doenças da Córnea/etiologia , Diabetes Mellitus/epidemiologia , Retinopatia Diabética/diagnóstico , Síndromes do Olho Seco/complicações , Síndromes do Olho Seco/etiologia , Microscopia Confocal
5.
Front Bioeng Biotechnol ; 10: 1065460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686254

RESUMO

Corneal transplantation constitutes one of the major treatments in severe cases of corneal diseases. The lack of cornea donors as well as other limitations of corneal transplantation necessitate the development of artificial corneal substitutes. Biosynthetic cornea model using 3D printing technique is promising to generate artificial corneal structure that can resemble the structure of the native human cornea and is applicable for regenerative medicine. Research on bioprinting artificial cornea has raised interest into the wide range of materials and cells that can be utilized as bioinks for optimal clarity, biocompatibility, and tectonic strength. With continued advances in biomaterials science and printing technology, it is believed that bioprinted cornea will eventually achieve a level of clinical functionality and practicality as to replace donated corneal tissues, with their associated limitations such as limited or unsteady supply, and possible infectious disease transmission. Here, we review the literature on bioprinting strategies, 3D corneal modelling, material options, and cellularization strategies in relation to keratoprosthesis design. The progress, limitations and expectations of recent cases of 3D bioprinting of artifial cornea are discussed. An outlook on the rise of 3D bioprinting in corneal reconstruction and regeneration is provided.

6.
J Clin Med ; 10(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34682816

RESUMO

Recent studies have highlighted the association between ocular diseases and microbiota profiles of the host intestinal tract and oral cavity. There is mounting evidence supporting the existence of a 'gut-eye axis', whereby changes in gut microbiome alter host immunity, with consequential implications for ocular health and disease. In this review, we examined recent published findings on the association between gut microbiome and ocular morbidity, based on 25 original articles published between 2011 to 2020. The review included both clinical and in vivo animal studies, with particular focus on the influence of the microbiome on host immunity and metabolism. Significant associations between altered intestinal microbiome and specific ocular diseases and pathological processes, including Behçet's syndrome, autoimmune uveitis, age-related macular degeneration, choroidal neovascularization, bacterial keratitis, and Sjögren-like lacrimal keratoconjunctivitis have been demonstrated. Furthermore, alterations in the gut microbiome resulted in quantifiable changes in the host immune response, suggesting immunopathogenesis as the basis for the link between intestinal dysbiosis and ocular disease. We also examined and compared different techniques used in the identification and quantification of gut microorganisms. With our enhanced understanding of the potential role of gut commensals in ophthalmic disease, the stage is set for further studies on the underlying mechanisms linking the gut microbiome, the host immune response, and the pathogenesis of ophthalmic disease.

7.
Exp Eye Res ; 211: 108747, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450184

RESUMO

PURPOSE: Cornea epithelial-stromal scarring is related to the differentiation of fibroblasts into opaque myofibroblasts. Our study aims to assess the effectiveness of Lycium barbarum polysaccharide (LBP) solution as a pre-treatment in minimizing corneal scarring. METHODS: Human corneal fibroblasts were cultured in a three-dimensional collagen type I-based hydrogel in an eye-on-a-chip model. Fibroblasts were pre-treated with 2 mg/mL LBP for 24 h, followed by another 24-h incubation with 10 ng/mL transforming growth factor-beta 1 (TGF-ß1) to induce relevant physiological events after stromal injury. Intracellular pro-fibrotic proteins, extracellular matrix proteins, and pro-inflammatory cytokines that involved in fibrosis, were assessed using immunocytochemistry and enzyme-linked immunosorbent assays. RESULTS: Compared to the positive control TGF-ß1 group, LBP pre-treated cells had a significantly lower expression of alpha-smooth muscle actin, marker of myofibroblasts, vimentin (p < 0.05), and also extracellular matrix proteins both collagen type II and type III (p < 0.05) that can be found in scar tissues. Moreover, LBP pre-treated cells had a significantly lower secretion of pro-inflammatory cytokines interleukin-6 and interleukin-8 (p < 0.05). The cell-laden hydrogel contraction and stiffness showed no significant difference between LBP pre-treatment and control groups. Fibroblasts pretreated with LBP as well had reduced angiogenic factors expression and suppression of undesired proliferation (p < 0.05). CONCLUSION: Our results showed that LBP reduced both pro-fibrotic proteins and pro-inflammatory cytokines on corneal injury in vitro. We suggest that LBP, as a natural Traditional Chinese Medicine, may potentially be a novel topical pre-treatment option prior to corneal refractive surgeries with an improved prognosis.


Assuntos
Cicatriz/prevenção & controle , Doenças da Córnea/prevenção & controle , Substância Própria/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Epitélio Corneano/efeitos dos fármacos , Actinas/metabolismo , Administração Oftálmica , Biomarcadores/metabolismo , Cicatriz/metabolismo , Doenças da Córnea/metabolismo , Ceratócitos da Córnea/efeitos dos fármacos , Ceratócitos da Córnea/metabolismo , Substância Própria/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Medicina Tradicional Chinesa , Soluções Oftálmicas , Fator de Crescimento Transformador beta1/farmacologia
8.
Ophthalmic Res ; 64(2): 178-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32474566

RESUMO

INTRODUCTION: This review aims to summarise the role of different cells, genes, proteins and lipid in regulating cornea epithelial-stromal homeostasis. METHODS: We performed an Entrez PubMed literature search using keywords "human," "cornea," "epithelial," "stromal," "homeostasis," "fibrosis response," and "pathogenesis" on 24th of September 2019, resulting in 35 papers, of which 18 were chosen after filtering for "English language" and "published within 10 years" as well as curation for relevance by the authors. RESULTS: The 18 selected papers showed that corneal epithelial cells, fibroblasts and telocytes, together with genes such as Klf4, Pax6 and Id found in the cells, play important roles in achieving homeostasis to maintain corneal integrity and transparency. Proteins classified as pro-fibrotic ligands and anti-fibrotic ligands are responsible for regulating cornea stromal fibrosis and extracellular matrix deposition, thus regulators of scar formation during wound healing. Anti-inflammatory ligands and wound repairing ligands are critical in eliciting protective inflammation and promoting epithelial healing, respectively. Protein receptors located on cellular membrane play a role in maintaining intercellular connections as well as corneal hydration. DISCUSSION/CONCLUSION: These studies prompt development of novel therapeutic strategies such as tear drops or ointments that target certain proteins to maintain corneal homeostasis. However, more in vitro and in vivo studies are required to prove the effectiveness of exogenous administration of molecules in improving healing outcome. Hence, future investigations of the molecular pathways highlighted in this review will reveal novel therapeutic tools such as gene or cell therapy to treat corneal diseases.


Assuntos
Doenças da Córnea/metabolismo , Substância Própria/metabolismo , Epitélio Corneano/metabolismo , Homeostase/fisiologia , Animais , Doenças da Córnea/fisiopatologia , Humanos , Fator 4 Semelhante a Kruppel
9.
J Clin Med ; 9(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171906

RESUMO

(1) Objective: To study the anti-fibrotic effects of Lycium barbarum polysaccharides (LBP) on corneal stromal fibroblasts and assess LBP's effect on cell viability. (2) Methods: Primary human corneal keratocytes of passage 3 to 6 were used for all experiments. Cells are pretreated with LBP solution for 24 h and then transforming growth factor beta 1 (TGFß1) for 48 h and collected for experiments. Fibrotic protein analysis was performed using immunofluorescence and Western blot. The effect of LBP on cell viability was assessed using the MTS assay. (3) Results: LBP significantly reduced the expression of fibrotic proteins, including α-SMA and extracellular matrix proteins (collagen type I and III). LBP significantly decreased the viability of myofibroblasts but not the fibroblasts. Conclusions: In this study, LBP was effective in the prevention of fibrosis gene expression. Further studies to assess the underlying mechanism and pharmacological properties will facilitate the formation of a topical LBP solution for in vivo studies.

10.
Eye Contact Lens ; 46(6): 329-340, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32452924

RESUMO

OBJECTIVES: To evaluate recent in vivo studies on emerging therapies for managing corneal epithelial injuries. METHODS: The search was conducted on PubMed for articles published between January 2015 and September 2019 and in English language. RESULTS: Thirty studies were identified for evaluation, including those on mesenchymal stem cells, amniotic membrane-derived therapies, endogenous peptides and their inhibitors, as well as hydrogel therapies. Intermediate to strong levels of evidence are presented regarding the use of these strategies on chemically injured cornea, including their effects on healing of corneal epithelial defect, anti-inflammatory properties, prevention of corneal neovascularization, as well as restoration of anatomy and functions of the anterior eye, although clinical trials are needed to determine the safety and efficacy of these strategies on humans. CONCLUSION: Recent advances and understanding in various novel therapeutic methods for corneal epithelial chemical injuries should provide potential alternatives to current standard treatment regimens and help reduce risks of complications, hence improve patient outcomes.


Assuntos
Lesões da Córnea , Neovascularização da Córnea , Córnea , Humanos , Cicatrização
11.
BMJ Open Diabetes Res Care ; 7(1): e000779, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803484

RESUMO

Diabetes mellitus is the most common cause of blindness in working age populations worldwide. While much of the focus for public health has been on secondary prevention in sight-threatening diabetic retinopathy, the cornea, including its epithelium and nerves, represents a major site of damage by chronic hyperglycemia. On injury, the diabetic cornea exhibits a delayed wound-healing response, as well as an altered ocular surface immune response. This suggests a potential association between the dysfunctional wound healing response and altered inflammation on the ocular surface. However, the presence of potential confounders makes this association difficult to investigate in human epidemiological studies. Thus, we turn to animal diabetic models for a better understanding. In this review, 20 original studies, published between 2008 and 2018, describe in vivo and in vitro models of diabetic cornea disease. We compared different models of diabetic cornea wound healing and discussed the relative strengths and drawbacks of each model. A number of molecular and cellular components involved in the corneal wound healing response that are altered in the presence of diabetes have been identified in the reviewed studies. Particularly, altered corneal epithelial protein concentrations of lumician and occludin were detected in diabetic eyes compared with controls. Additionally, the importance of IL-1ß in modulating the inflammatory response after corneal injury in patients with diabetes and controls was further elucidated. Meanwhile, abnormal P2×7 receptor localization and decreased corneal sub-basal nerve density in diabetic eyes were shown to contribute to altered corneal nerve signaling after injury and thus affecting the wound healing response. Finally, the discovery of the therapeutic effects of topically administered aloe vera, Serpine 1, Resolvin D1 (RvD1), pigment epithelium-derived factor (PEDF) and Pro-His-Ser-Arg-Asn in diabetic animal models of cornea epithelial and nerve injury provide encouraging evidence for the future availability of effective treatment for diabetic keratopathy.


Assuntos
Lesões da Córnea/terapia , Complicações do Diabetes/terapia , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Cicatrização , Animais , Lesões da Córnea/etiologia , Lesões da Córnea/patologia , Complicações do Diabetes/etiologia , Complicações do Diabetes/patologia , Humanos
12.
Biomed Res Int ; 2019: 4615745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891458

RESUMO

OBJECTIVE: To evaluate the effect of Lycium barbarum polysaccharides in the treatment and/or prevention of diseases of different etiologies and systems. METHODS: We performed an Entrez PubMed literature search using keywords "lycium", "barbarum", "polysaccharides", "anti-fibrotic", "anti-apoptotic", "anti-oxidizing", "anti-aging", "neuroprotection", "metabolism", "diabetes", "hyperlipidemia", "neuroprotection", and "immunomodulation" on the 14th of August 2018, resulting in 207 papers, of which 20 were chosen after filtering for 'English language' and 'published within 10 years' as well as curation for relevance by the authors. RESULTS: The 20 selected papers included 2 randomized control trials (1 double-blinded RCT and 1 double-blinded placebo-controlled RCT), 11 in vivo studies, 5 in vitro studies, 1 study with both in vivo and in vitro results, and 1 chemical study. There is good evidence from existing studies on the antifibrotic, antioxidizing, neuroprotective, anticancer, and anti-inflammatory effects of Lycium barbarum polysaccharides. However, there is a need for further studies in the form of large-scale clinical trials to support its use in humans. There is also significant potential for LBP as a safe and effective topical treatment in ocular surface diseases, owing to promising in vitro results and a lack of demonstrated toxic effects to corneal epithelial cells. CONCLUSION: Results from existing studies suggest that LBP is a promising therapeutic agent, particularly in the management of liver disease, hyperlipidemia, and diabetes. One major limitation of current research is a lack of standardization and quality control for the LBP used. The availability of research-grade LBP will inevitably promote future research in this field worldwide.


Assuntos
Doença , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Pesquisa Translacional Biomédica
13.
Eye Contact Lens ; 45(6): 347-355, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30724841

RESUMO

OBJECTIVES: To evaluate recent studies on available and experimental therapies in preventing or minimizing corneal stromal scarring after injury. METHODS: We performed an Entrez PubMed literature search using keywords "cornea," "scarring," "haze," "opacity," "ulcer," "treatments," "therapies," "treatment complications," and "pathophysiology" resulting in 390 articles of which 12 were analyzed after filtering, based on English language and publication within 8 years, and curation for relevance by the authors. RESULTS: The 12 articles selected included four randomized control trials (RCTs) (two were double-blinded placebo-controlled RCTs, one was a prospective partially masked RCT, and one was an open-label RCT), two retrospective observational studies, and six laboratory-based studies including two studies having in vivo and in vitro experiments, one was in vivo study, one was ex vivo study, and the last two were in vitro studies. The current mainstay for preventing or minimizing corneal scarring involves the use of topical corticosteroids and local application of mitomycin C. However, supportive evidence for their use in clinical practice from well-designed RCTs is lacking. Laboratory studies on topical rosiglitazone therapy, vitamin C prophylaxis, gene therapy, and stem cell therapy have shown promising results but have yet to be translated to clinical research. CONCLUSION: There is a need for more robust randomized controlled trials to support treatments using topical corticosteroids and mitomycin C. Furthermore, their clinical efficacy and safety profile should be compared with new treatments that have shown promising results in the laboratory setting. Ultimately, the goal should be to personalize cornea scarring treatment according to the most effective treatment for the specific underlying pathology.


Assuntos
Alquilantes/uso terapêutico , Cicatriz/prevenção & controle , Lesões da Córnea/complicações , Substância Própria/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Mitomicina/uso terapêutico , Prednisona/uso terapêutico , Administração Oftálmica , Cicatriz/etiologia , Quimioterapia Combinada , Humanos , Soluções Oftálmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA