Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lancet Infect Dis ; 24(9): 1025-1036, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38723650

RESUMO

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Gana , Quênia/epidemiologia , Lactente , Masculino , Feminino , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Genótipo , Estudos Longitudinais , Eficácia de Vacinas , Plasmodium falciparum/imunologia , Plasmodium falciparum/genética , Malária/prevenção & controle
2.
J Infect Dis ; 230(2): e486-e495, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38438123

RESUMO

BACKGROUND: The RTS,S/AS01E (RTS,S) malaria vaccine is recommended for children in malaria endemic areas. This phase 2b trial evaluates RTS,S fractional- and full-dose regimens in Ghana and Kenya. METHODS: In total, 1500 children aged 5-17 months were randomized (1:1:1:1:1) to receive RTS,S or rabies control vaccine. RTS,S groups received 2 full RTS,S doses at months 0 and 1 and either full (groups R012-20, R012-14-26) or fractional doses (one-fifth; groups Fx012-14-26, Fx017-20-32). RESULTS: At month 32 post-dose 1, vaccine efficacy against clinical malaria (all episodes) ranged from 38% (R012-20; 95% confidence interval [CI]: 24%-49%) to 53% (R012-14-26; 95% CI: 42%-62%). Vaccine impact (cumulative number of cases averted/1000 children vaccinated) was 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), and 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional vs full dose; post hoc analysis), we estimated cases averted/1000 RTS,S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), and 880 (Fx017-20-32). CONCLUSIONS: Vaccine efficacy was similar across RTS,S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If maintained through trial end, these observations underscore the means to reduce cost per regimen thus maximizing impact and optimizing supply. CLINICAL TRIALS REGISTRATION: NCT03276962 (ClinicalTrials.gov).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Eficácia de Vacinas , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Gana , Lactente , Quênia , Feminino , Masculino , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Esquemas de Imunização , Malária/prevenção & controle , Plasmodium falciparum/imunologia
3.
Vaccine ; 42(9): 2290-2298, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431444

RESUMO

BACKGROUND: World Health Organization human papillomavirus (HPV) vaccination recommendations include a single- or two-dose schedule in individuals 9-20 years old and advice for generating data on single-dose efficacy or immunobridging. The ongoing Phase 3 trial of Innovax's bivalent (types 16 and 18) HPV vaccine (Cecolin®) assesses in low- and middle-income countries alternative dosing schedules and generates data following one dose in girls 9-14 years old. Interim data for the 6-month dosing groups are presented. METHODS: In Bangladesh and Ghana, 1,025 girls were randomized to receive either two doses of Cecolin at 6-, 12-, or 24-month intervals; one dose of Gardasil® followed by one dose of Cecolin at month 24; or two doses of Gardasil 6 months apart (referent). Serology was measured by enzyme-linked immunosorbent assay (ELISA) and, in a subset, by neutralization assays. Primary objectives include immunological non-inferiority of the Cecolin schedules to referent one month after the second dose. Safety endpoints include reactogenicity and unsolicited adverse events for 7 and 30 days post-vaccination, respectively, as well as serious adverse events throughout the study. RESULTS: Interim analyses included data from the two groups on a 0, 6-month schedule with 205 participants per group. One month after Dose 2, 100% of participants were seropositive by ELISA and had seroconverted for both antigens. Non-inferiority of Cecolin to Gardasil was demonstrated. Six months following one dose, over 96% of participants were seropositive by ELISA for both HPV antigens, with a trend for higher geometric mean concentration following Cecolin administration. Reactogenicity and safety were comparable between both vaccines. CONCLUSIONS: Cecolin in a 0, 6-month schedule elicits robust immunogenicity. Non-inferiority to Gardasil was demonstrated one month after a 0, 6-month schedule. Immunogenicity following one dose was comparable to Gardasil up to six months. Both vaccines were safe and well tolerated (ClinicalTrials.gov No. 04508309).


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/efeitos adversos , Infecções por Papillomavirus/prevenção & controle , Anticorpos Antivirais , Vacinação , Imunogenicidade da Vacina
4.
medRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045387

RESUMO

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

5.
Lancet Infect Dis ; 22(9): 1329-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753316

RESUMO

BACKGROUND: Controlled infection studies in malaria-naive adults suggest increased vaccine efficacy for fractional-dose versus full-dose regimens of RTS,S/AS01. We report first results of an ongoing trial assessing different fractional-dose regimens in children, in natural exposure settings. METHODS: This open-label, phase 2b, randomised controlled trial is conducted at the Malaria Research Center, Agogo, Ashanti Region (Ghana), and the Kenya Medical Research Institute and the US Centers for Disease Control and Prevention site in Siaya County (Kenya). We enrolled children aged 5-17 months without serious acute or chronic illness who had previously received three doses of diphtheria, tetanus, pertussis, and hepatitis B vaccine and at least three doses of oral polio vaccine. Children were randomly assigned (1:1:1:1:1) using a web-based randomisation system with a minimisation procedure accounting for centre to receive rabies control vaccine (M012 schedule) or two full doses of RTS,S/AS01E at month 0 and month 1, followed by either full doses at months 2 and 20 (group R012-20 [standard regimen]), full doses at months 2, 14, 26, and 38 (R012-14), fractional doses at months 2, 14, 26, and 38 (Fx012-14), or fractional doses at months 7, 20, and 32 (Fx017-20). The fractional doses were administered as one fifth (0·1 mL) of the full RTS,S dose (0·5 mL) after reconstitution. All vaccines were administered by intramuscular injection in the left deltoid. The primary outcome was occurrence of clinical malaria cases from month 2·5 until month 14 for the Fx012-14 group versus the pooled R012-14 and R012-20 groups in the per-protocol set. We assessed incremental vaccine efficacy of the Fx012-14 group versus the pooled R012-14 and R012-20 group over 12 months after dose three. Safety was assessed in all children who received at least one vaccine dose. This trial is registered with ClinicalTrials.gov, NCT03276962. FINDINGS: Between Sept 28, 2017, and Sept 25, 2018, 2157 children were enrolled, of whom 1609 were randomly assigned to a treatment group (322 to each RTS,S/AS01E group and 321 to the rabies vaccine control group). 1500 children received at least one study vaccine dose and the per-protocol set comprised 1332 children. Over 12 months after dose three, the incremental vaccine efficacy in the Fx012-14 group versus the pooled R012-14 and R12-20 groups was -21% (95% CI -57 to 7; p=0·15). Up to month 21, serious adverse events occurred in 48 (16%) of 298 children in the R012-20 group, 45 (15%) of 294 in the R012-14 group, 47 (15%) of 304 in the Fx012-14 group, 62 (20%) of 311 in the Fx017-20 group, and 71 (24%) of 293 in the control group, with no safety signals observed. INTERPRETATION: The Fx012-14 regimen was not superior to the standard regimen over 12 months after dose three. All RTS,S/AS01E regimens provided substantial, similar protection against clinical malaria, suggesting potential flexibility in the recommended dosing regimen and schedule. This, and the effect of annual boosters, will be further evaluated through 50 months of follow-up. FUNDING: GlaxoSmithKline Biologicals; PATH's Malaria Vaccine Initiative.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Vacina Antirrábica , Adulto , Criança , Gana , Humanos , Quênia
6.
Vaccine ; 38(18): 3411-3421, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32192811

RESUMO

BACKGROUND: To optimize vaccine implementation visits for young children, it could be efficient to administer the first RTS,S/AS01 malaria vaccine dose during the Expanded Programme on Immunization (EPI) visit at 6 months of age together with Vitamin A supplementation and the third RTS,S/AS01 dose on the same day as yellow fever (YF), measles and rubella vaccines at 9 months of age. We evaluated the safety and immunogenicity of RTS,S/AS01 when co-administered with YF and combined measles-rubella (MR) vaccines. METHODS: In this phase 3b, open-label, controlled study (NCT02699099), 709 Ghanaian children were randomized (1:1:1) to receive RTS,S/AS01 at 6, 7.5 and 9 months of age, and YF and MR vaccines at 9 or 10.5 months of age (RTS,S coad and RTS,S alone groups, respectively). The third group received YF and MR vaccines at 9 months of age and will receive RTS,S/AS01 at 10.5, 11.5 and 12.5 months of age (Control group). All children received Vitamin A at 6 months of age. Non-inferiority of immune responses to the vaccine antigens was evaluated 1 month following co-administration versus RTS,S/AS01 or EPI vaccines (YF and MR vaccines) alone using pre-defined non-inferiority criteria. Safety was assessed until Study month 4.5. RESULTS: Non-inferiority of antibody responses to the anti-circumsporozoite and anti-hepatitis B virus surface antigens when RTS,S/AS01 was co-administered with YF and MR vaccines versus RTS,S/AS01 alone was demonstrated. Non-inferiority of antibody responses to the measles, rubella, and YF antigens when RTS,S/AS01 was co-administered with YF and MR vaccines versus YF and MR vaccines alone was demonstrated. The safety profile of all vaccines was clinically acceptable in all groups. CONCLUSIONS: RTS,S/AS01 can be co-administered with Vitamin A at 6 months and with YF and MR vaccines at 9 months of age during EPI visits, without immune response impairment to any vaccine antigen or negative safety effect.


Assuntos
Vacinas Antimaláricas , Sarampo , Rubéola (Sarampo Alemão) , Vacina contra Febre Amarela , Criança , Pré-Escolar , Gana , Humanos , Lactente , Vacinas Antimaláricas/efeitos adversos , Rubéola (Sarampo Alemão)/prevenção & controle , Vacina contra Febre Amarela/efeitos adversos
7.
Hum Vaccin Immunother ; 16(6): 1464-1470, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31951771

RESUMO

RTS,S/AS01E malaria vaccine contains the hepatitis B virus surface antigen and may thus serve as a potential hepatitis B vaccine. To evaluate the impact of RTS,S/AS01E when implemented in the Expanded Program of Immunization, infants 8-12 weeks old were randomized to receive either RTS,S/AS01E or a licensed hepatitis B control vaccine (HepB), both co-administered with various combinations of the following childhood vaccines: diphtheria-tetanus-acellular pertussis-Haemophilus influenzae type b, trivalent oral poliovirus, pneumococcal non-typeable Haemophilus influenzae protein D conjugate and human rotavirus vaccine. Long-term persistence of antibodies against the circumsporozoite (CS) protein and hepatitis B surface antigen (HBsAg) were assessed, together with the immune memory response to the HB antigen following a booster dose of HepB vaccine. Subgroups receiving RTS,S or the HepB control vaccine were pooled into RTS,S groups and HepB groups, respectively. One month post-HepB booster vaccination, 100% of participants in the RTS,S groups and 98.3% in the control groups had anti-HBs antibody concentrations ≥10 mIU/mL with the geometric mean concentrations (GMCs) at 46634.7 mIU/mL (95% CI: 40561.3; 53617.6) and 9258.2 mIU/mL (95% CI: 6925.3; 12377.0), respectively. Forty-eight months post-primary vaccination anti-CS antibody GMCs ranged from 2.3 EU/mL to 2.7 EU/mL in the RTS,S groups compared to 1.1 EU/mL in the control groups. Hepatitis B priming with the RTS,S/AS01E vaccine was effective and resulted in a memory response to HBsAg as shown by the robust booster response following an additional dose of HepB vaccine. RTS,S/AS01E when co-administered with PHiD-CV, HRV and other childhood vaccines, had an acceptable safety profile.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Vacinas Anti-Haemophilus , Hepatite B , Vacinas Antimaláricas , Criança , Vacina contra Difteria, Tétano e Coqueluche , Vacinas contra Hepatite B , Humanos , Imunização Secundária , Imunogenicidade da Vacina , Memória Imunológica , Lactente , Vacina Antipólio de Vírus Inativado , Vacinas Combinadas
8.
Hum Vaccin Immunother ; 14(6): 1489-1500, 2018 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-29630438

RESUMO

The RTS,S/AS01 malaria vaccine (Mosquirix) reduces the incidence of Plasmodium falciparum malaria and is intended for routine administration to infants in Sub-Saharan Africa. We evaluated the immunogenicity and safety of 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV; Synflorix) and human rotavirus vaccine (HRV; Rotarix) when co-administered with RTS,S/AS01 ( www.clinicaltrials.gov NCT01345240) in African infants. 705 healthy infants aged 8-12 weeks were randomized to receive three doses of either RTS,S/AS01 or licensed hepatitis B (HBV; Engerix B) vaccine (control) co-administered with diphtheria-tetanus-acellular pertussis-Haemophilus influenzae type-b-conjugate vaccine (DTaP/Hib) and trivalent oral poliovirus vaccine at 8-12-16 weeks of age, because DTaP/Hib was not indicated before 8 weeks of age. The vaccination schedule can still be considered broadly applicable because it was within the age range recommended for EPI vaccination. PHiD-CV or HRV were either administered together with the study vaccines, or after a 2-week interval. Booster doses of PHiD-CV and DTaP/Hib were administered at age 18 months. Non-inferiority of anti-HBV surface antigen antibody seroprotection rates following co-administration with RTS,S/AS01 was demonstrated compared to the control group (primary objective). Pre-specified non-inferiority criteria were reached for PHiD-CV (for 9/10 vaccine serotypes), HRV, and aP antigens co-administered with RTS,S/AS01 as compared to HBV co-administration (secondary objectives). RTS,S/AS01 induced a response to circumsporozoite protein in all groups. Pain and low grade fever were reported more frequently in the PHiD-CV group co-administered with RTS,S/AS01 than PHiD-CV co-administered with HBV. No serious adverse events were considered to be vaccine-related. RTS,S/AS01 co-administered with pediatric vaccines had an acceptable safety profile. Immune responses to RTS,S/AS01 and to co-administered PHiD-CV, pertussis antigens and HRV were satisfactory.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Esquemas de Imunização , Imunogenicidade da Vacina , Vacinas Antimaláricas/administração & dosagem , Vacinas Pneumocócicas/administração & dosagem , Vacinas contra Rotavirus/administração & dosagem , Vacinas Sintéticas/administração & dosagem , África Subsaariana , Feminino , Febre/epidemiologia , Humanos , Incidência , Lactente , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Masculino , Dor/epidemiologia , Vacinas Pneumocócicas/efeitos adversos , Vacinas Pneumocócicas/imunologia , Vacinas contra Rotavirus/efeitos adversos , Vacinas contra Rotavirus/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA