Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7775, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522333

RESUMO

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.


Assuntos
COVID-19 , Convalescença , Trombose , Humanos , Multiômica , SARS-CoV-2 , Leucócitos Mononucleares , Proteômica , Proteínas de Membrana
2.
Nat Commun ; 12(1): 1980, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790300

RESUMO

The majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these 'SLE-like' conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Perfilação da Expressão Gênica/métodos , Interferon Tipo I/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Adulto , Idoso , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Humanos , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adulto Jovem
3.
Elife ; 102021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704068

RESUMO

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We measured 436 circulating proteins in serial blood samples from hospitalised and non-hospitalised ESKD patients with COVID-19 (n = 256 samples from 55 patients). Comparison to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent results in a separate subcohort of 46 COVID-19 patients. Two hundred and three proteins were associated with clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g. proteinase-3), and epithelial injury (e.g. KRT19). Machine-learning identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear mixed models uncovered 32 proteins displaying different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. These data implicate epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the pathology of severe COVID-19 and provide a resource for identifying drug targets.


COVID-19 varies from a mild illness in some people to fatal disease in others. Patients with severe disease tend to be older and have underlying medical problems. People with kidney failure have a particularly high risk of developing severe or fatal COVID-19. Patients with severe COVID-19 have high levels of inflammation, causing damage to tissues around the body. Many drugs that target inflammation have already been developed for other diseases. Therefore, to repurpose existing drugs or design new treatments, it is important to determine which proteins drive inflammation in COVID-19. Here, Gisby, Clarke, Medjeral-Thomas et al. measured 436 proteins in the blood of patients with kidney failure and compared the levels between patients who had COVID-19 to those who did not. This revealed that patients with COVID-19 had increased levels of hundreds of proteins involved in inflammation and tissue injury. Using a combination of statistical and machine learning analyses, Gisby et al. probed the data for proteins that might predict a more severe disease progression. In total, over 200 proteins were linked to disease severity, and 69 with increased risk of death. Tracking how levels of blood proteins changed over time revealed further differences between mild and severe disease. Comparing this data with a similar study of COVID-19 in people without kidney failure showed many similarities. This suggests that the findings may apply to COVID-19 patients more generally. Identifying the proteins that are a cause of severe COVID-19 ­ rather than just correlated with it ­ is an important next step that could help to select new drugs for severe COVID-19.


Assuntos
COVID-19/sangue , Falência Renal Crônica/sangue , Falência Renal Crônica/virologia , Diálise Renal/métodos , Idoso , Biomarcadores/sangue , COVID-19/mortalidade , COVID-19/virologia , Feminino , Previsões , Hospitalização , Humanos , Falência Renal Crônica/mortalidade , Falência Renal Crônica/terapia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos , Diálise Renal/mortalidade , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença
4.
J Cell Sci ; 133(22)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33148611

RESUMO

In response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans. We then show that, although uptake of BCAAs is not altered, their transamination by BCAT1 is increased following 8 h lipopolysaccharide (LPS) stimulation. Of note, leucine is not metabolized to integrate into the TCA cycle in basal or stimulated human macrophages. Surprisingly, the pharmacological inhibition of BCAT1 reduced glucose-derived itaconate, α-ketoglutarate and 2-hydroxyglutarate levels without affecting succinate and citrate levels, indicating a partial inhibition of the TCA cycle. This indirect effect is associated with NRF2 (also known as NFE2L2) activation and anti-oxidant responses. These results suggest a moonlighting role of BCAT1 through redox-mediated control of mitochondrial function during early macrophage activation.


Assuntos
Ativação de Macrófagos , Macrófagos , Mitocôndrias , Transaminases , Ciclo do Ácido Cítrico , Humanos , Leucina/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Transaminases/metabolismo
5.
Cell Rep ; 28(2): 498-511.e5, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291584

RESUMO

Iron is an essential metal that fine-tunes the innate immune response by regulating macrophage function, but an integrative view of transcriptional and metabolic responses to iron perturbation in macrophages is lacking. Here, we induced acute iron chelation in primary human macrophages and measured their transcriptional and metabolic responses. Acute iron deprivation causes an anti-proliferative Warburg transcriptome, characterized by an ATF4-dependent signature. Iron-deprived human macrophages show an inhibition of oxidative phosphorylation and a concomitant increase in glycolysis, a large increase in glucose-derived citrate pools associated with lipid droplet accumulation, and modest levels of itaconate production. LPS polarization increases the itaconate:succinate ratio and decreases pro-inflammatory cytokine production. In rats, acute iron deprivation reduces the severity of macrophage-dependent crescentic glomerulonephritis by limiting glomerular cell proliferation and inducing lipid accumulation in the renal cortex. These results suggest that acute iron deprivation has in vivo protective effects mediated by an anti-inflammatory immunometabolic switch in macrophages.


Assuntos
Inflamação/tratamento farmacológico , Deficiências de Ferro , Animais , Humanos , Macrófagos/metabolismo , Masculino , Ratos
6.
Science ; 360(6388): 558-563, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29724957

RESUMO

Deficiency of C1q, the initiator of the complement classical pathway, is associated with the development of systemic lupus erythematosus (SLE). Explaining this association in terms of abnormalities in the classical pathway alone remains problematic because C3 deficiency does not predispose to SLE. Here, using a mouse model of SLE, we demonstrate that C1q, but not C3, restrains the response to self-antigens by modulating the mitochondrial metabolism of CD8+ T cells, which can themselves propagate autoimmunity. C1q deficiency also triggers an exuberant effector CD8+ T cell response to chronic viral infection leading to lethal immunopathology. These data establish a link between C1q and CD8+ T cell metabolism and may explain how C1q protects against lupus, with implications for the role of viral infections in the perpetuation of autoimmunity.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD8-Positivos/metabolismo , Complemento C1q/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Coriomeningite Linfocítica/imunologia , Animais , Autoanticorpos/imunologia , Autoimunidade/genética , Complemento C1q/genética , Complemento C3/genética , Complemento C3/fisiologia , Via Clássica do Complemento/genética , Via Clássica do Complemento/imunologia , Modelos Animais de Doenças , Imunoglobulinas/imunologia , Memória Imunológica/imunologia , Lúpus Eritematoso Sistêmico/genética , Coriomeningite Linfocítica/genética , Camundongos , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA