Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 32, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506984

RESUMO

Laccases are multicopper oxidases able to oxidize several phenolic compounds and find application in numerous industrial applications. Among laccase producers, white-rot fungi represent a valuable source of multiple isoforms and isoenzymes of these multicopper oxidases. Here we describe the identification, biochemical characterization, and application of laccase 2 from Trametes polyzona (TP-Lac2), a basidiomycete fungus emerged among others that have been screened by plate assay. This enzyme has an optimal temperature of 50 °C and in acidic conditions it is able to oxidize both phenolic and non-phenolic compounds. The ability of TP-Lac2 to decolorize textile dyes was tested in the presence of natural and synthetic mediators at 30 °C and 50 °C. Our results indicate that TP-Lac2 most efficiently decolorizes (decolorization rate > 75%) malachite green oxalate, orange G, amido black10B and bromocresol purple in the presence of acetosyringone and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonate)-ABTS. Overall, the laccase mediator system consisting of TP-Lac2 and the natural mediator acetosyringone has potential as an environmentally friendly alternative for wastewater treatment in the textile industry.

2.
Fungal Biol ; 125(6): 485-494, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024596

RESUMO

Some strains of Aspergillus niger have been previously reported to produce sclerotia under certain conditions. Sclerotia are aggregations of hyphae which can act either as survival or as sexual structures in species related to A. niger. In this study, we were able to induce the formation of sclerotia in the progenitor of the industrial citric acid producing strains of A. niger, ATCC 1015, and in pyrG mutants derived from it. Sclerotia can be stably formed by ATCC 1015 on malt extract agar medium supplemented with raisins, showing a spatial differentiation of the fungus dependent on the addition and on the position of the fruits into the medium. On other media, including malt extract agar, pyrG auxotrophs also form abundant sclerotia, while the complementation of this gene reverses this phenotype. Additionally, a macro- and microscopical analysis of the sclerotia is reported. Our results show that the sclerotia formed by A. niger are similar to those formed by other fungi, not only in their morphology but also in their ability to germinate and regenerate the organism.


Assuntos
Aspergillus niger , Hifas , Aspergillus niger/citologia , Aspergillus niger/genética , Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Genes Fúngicos/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA