Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 8(2): 026116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38827499

RESUMO

Crowding effects significantly influence the phase behavior and the structural and dynamic properties of the concentrated protein mixtures present in the cytoplasm of cells or in the blood serum. This poses enormous difficulties for our theoretical understanding and our ability to predict the behavior of these systems. While the use of course grained colloid-inspired models allows us to reproduce the key physical solution properties of concentrated monodisperse solutions of individual proteins, we lack corresponding theories for complex polydisperse mixtures. Here, we test the applicability of simple mixing rules in order to predict solution properties of protein mixtures. We use binary mixtures of the well-characterized bovine eye lens proteins α and γB crystallin as model systems. Combining microrheology with static and dynamic scattering techniques and observations of the phase diagram for liquid-liquid phase separation, we show that reasonably accurate descriptions are possible for macroscopic and mesoscopic signatures, while information on the length scale of the individual protein size requires more information on cross-component interaction.

2.
Biochim Biophys Acta Gen Subj ; 1865(4): 129485, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31734459

RESUMO

Microgels offer opportunities for improved delivery of antimicrobial peptides (AMP). To contribute to a foundation for rational design of such systems, we here study the effects of electrostatics on the generation of peptide-carrying microgels. For this, alginate microgels loaded with polymyxin B and cross-linked by Ca2+, were formed by electrostatic complexation using a hydrodynamic focusing three-dimensional (3D)-printed micromixer, varying pH and component concentrations. The structure of the resulting composite nanoparticles was investigated by small-angle X-ray scattering, dynamic light scattering, and z-potential measurements, whereas peptide encapsulation and release was monitored spectrophotometrically. Furthermore, membrane interactions of these systems were assessed by dye leakage assays in model lipid vesicles. Our results indicate that charge contrast between polymyxin B and alginate during microgel formation affects particle size and network dimensions. In particular, while microgels prepared at maximum polymyxin B-alginate charge contrast at pH 5 and 7.4 are characterized by sharp interfaces, those formed at pH 9 are characterized by a more diffuse core, likely caused by a weaker peptide-polymer affinity, and a shell dominated by alginate that shrinks at high CaCl2 concentrations. Quantitatively, however, these effects were relatively minor, as were differences in peptide encapsulation efficiency and electrolyte-induced peptide release. This demonstrates that rather wide charge contrasts allow efficient complexation and particle formation, with polymyxin B encapsulated within the particle interior at low ionic strength, but released at high electrolyte concentration. As a consequence of this, peptide-mediated membrane destabilization were suppressed by microgel incorporation at low ionic strength, but regained after microgel disruption. After particle disruption at high ionic strength, however, some polymyxin B was found to remain bound to alginate chains from the disrupted composite microgel particles, resulting in partial loss in membrane interactions, compared to the free peptide.


Assuntos
Alginatos/química , Antibacterianos/administração & dosagem , Lipossomos/química , Microgéis/química , Polimixina B/administração & dosagem , Antibacterianos/química , Bactérias/química , Materiais Biomiméticos/química , Liberação Controlada de Fármacos , Tamanho da Partícula , Polimixina B/química , Eletricidade Estática
3.
Biophys J ; 119(12): 2483-2496, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189682

RESUMO

We present a multiscale characterization of aqueous solutions of the bovine eye lens protein ßH crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.


Assuntos
Cristalino , beta-Cristalinas , Animais , Bovinos , Difusão , Proteínas , Viscosidade
4.
Biomolecules ; 10(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824376

RESUMO

The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I ß-turns to ß-sheets were revealed, correlating with an increase in the aSN1-61/heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN1-61 co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN1-61, through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I ß-turn structures likely critical for triggering aSN fibrillation.


Assuntos
Heparina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Dicroísmo Circular , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
5.
FASEB J ; 34(6): 7462-7482, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277854

RESUMO

In the brain, α-synuclein (aSN) partitions between free unbound cytosolic and membrane bound forms modulating both its physiological and pathological role and complicating its study due to structural heterogeneity. Here, we use an interdisciplinary, synergistic approach to characterize the properties of aSN:lipid mixtures, isolated aSN:lipid co-structures, and aSN in mammalian cells. Enabled by the isolation of the membrane-bound state, we show that within the previously described N-terminal membrane anchor, membrane interaction relies both on an N-terminal tail (NTT) head group layer insertion of 14 residues and a folded-upon-binding helix at the membrane surface. Both binding events must be present; if, for example, the NTT insertion is lost, the membrane affinity of aSN is severely compromised and formation of aSN:lipid co-structures hampered. In mammalian cells, compromised cooperativity results in lowered membrane association. Thus, avidity within the N-terminal anchor couples N-terminal insertion and helical surface binding, which is crucial for aSN membrane interaction and cellular localization, and may affect membrane fusion.


Assuntos
Membrana Celular/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Humanos , Mamíferos/metabolismo , Fusão de Membrana/fisiologia
6.
J Med Chem ; 63(3): 1156-1177, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922756

RESUMO

Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 is an enzyme complex, which generates reactive oxygen species and contributes to oxidative stress. The p47phox-p22phox interaction is critical for the activation of the catalytical NOX2 domain, and p47phox is a potential target for therapeutic intervention. By screening 2500 fragments using fluorescence polarization and a thermal shift assay and validation by surface plasmon resonance, we found eight hits toward the tandem SH3 domain of p47phox (p47phoxSH3A-B) with KD values of 400-600 µM. Structural studies revealed that fragments 1 and 2 bound two separate binding sites in the elongated conformation of p47phoxSH3A-B and these competed with p22phox for binding to p47phoxSH3A-B. Chemical optimization led to a dimeric compound with the ability to potently inhibit the p47phoxSH3A-B-p22phox interaction (Ki of 20 µM). Thereby, we reveal a new way of targeting p47phox and present the first report of drug-like molecules with the ability to bind p47phox and inhibit its interaction with p22phox.


Assuntos
Indóis/síntese química , NADPH Oxidases/antagonistas & inibidores , Azóis/química , Descoberta de Drogas , Humanos , Indóis/química , Isoindóis , Estrutura Molecular , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Compostos Organosselênicos/química , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
7.
J Colloid Interface Sci ; 561: 749-761, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771874

RESUMO

Protein (mis)folding, stability and aggregation are of interest in numerous fields, such as food sciences, biotechnology, and health sciences, and efforts are directed towards the elucidation of the underlying molecular mechanisms. Through an integrative approach, we show that a subtle balance between hydrogen bond formation and hydrophobic interactions defines protein self-assembly pathways. Hydrophobic co-solvents, such as monohydric alcohols, modulate these two forces through a combination of direct solvent-protein and solvent-mediated interactions, depending on the size of the alcohol. This affects the initial conformation of the model protein α-lactalbumin, which can be linked to variations of its fibrillation propensity, as well as the morphology of the final structures. These findings pave the way towards a better understanding of the forces governing protein self-assembly, allowing the development of strategies to suppress unwanted aggregation and control the growth of tuneable protein-based biomaterials.


Assuntos
Lactalbumina/química , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Solventes/química , Álcoois/química , Animais , Bovinos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular
8.
Biochemistry ; 58(50): 5052-5065, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747254

RESUMO

A hallmark of Parkinson's disease is the presence of Lewy bodies consisting of lipids and proteins, mainly fibrillated α-synuclein (aSN). aSN is an intrinsically disordered protein exerting its physiological role in an ensemble of states, one of which coexists in large assemblies with lipids, recently termed co-structures. Here, we decipher the kinetics of aSN:lipid co-structure formation to decode its mechanism of formation, and we show that the co-structures form with a distinct stoichiometry. Through seeded fibrillation assays, we demonstrate that aSN:lipid co-structures accelerate aSN fibril nucleation compared to lipid vesicles alone. A small-angle X-ray scattering-based model is proposed in which aSN decorates the lipid vesicle surface, yielding properties similar to those of the fibril surface, enhancing fibril nucleation. The delicate balance of aSN structural states close to and on the membrane may under given conditions, e.g., increased local concentrations, be a crucial switching factor between functional and pathological behavior.


Assuntos
Amiloide/química , Metabolismo dos Lipídeos , Lipídeos/química , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína
9.
Sci Rep ; 9(1): 4019, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858420

RESUMO

The full length human histone 3 lysine 4 demethylase KDM5B (PLU-1/Jarid1B) has been studied using Hydrogen/Deuterium exchange mass spectrometry, homology modelling, sequence analysis, small angle X-ray scattering and electron microscopy. This first structure on an intact multi-domain Jumonji histone demethylase reveal that the so-called PLU region, in the central region of KDM5B, has a curved α-helical three-dimensional structure, that acts as a rigid linker between the catalytic core and a region comprising four α-helices, a loop comprising the PHD2 domain, two large intrinsically disordered loops and the PHD3 domain in close proximity. The dumbbell shaped and curved KDM5B architecture observed by electron microscopy is complementary to the nucleosome surface and has a striking overall similarity to that of the functionally related KDM1A/CoREST complex. This could suggest that there are similarities between the demethylation mechanisms employed by the two histone 3 lysine 4 demethylases at the molecular level.


Assuntos
Histona Desmetilases com o Domínio Jumonji/química , Proteínas Nucleares/química , Proteínas Repressoras/química , Proteínas Correpressoras/química , Desmetilação , Histona Desmetilases/química , Humanos , Proteínas do Tecido Nervoso/química , Domínios Proteicos
10.
J Colloid Interface Sci ; 538: 404-419, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530078

RESUMO

The exposure of biological membranes to reactive oxygen species (ROS) plays an important role in many pathological conditions such as inflammation, infection, or sepsis. ROS also modulate signaling processes and produce markers for damaged tissue. Lipid peroxidation, mainly affecting polyunsaturated phospholipids, results in a complex mixture of oxidized products, which may dramatically alter membrane properties. Here, we have employed a set of biophysical and surface-chemical techniques, including neutron and X-ray scattering, to study the structural, compositional, and stability changes due to oxidative stress on phospholipid bilayers composed of lipids with different degrees of polyunsaturation. In doing so, we obtained real-time information about bilayer degradation under in situ UV exposure using neutron reflectometry. We present a set of interrelated physicochemical effects, including gradual increases in area per molecule, head group and acyl chain hydration, as well as bilayer thinning, lateral phase separation, and defect formation leading to content loss upon membrane oxidation. Such effects were observed to depend on the presence of polyunsaturated phospholipids in the lipid membrane, suggesting that these may also play a role in the complex oxidation processes occurring in cells.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Físico-Química , Difração de Nêutrons , Oxirredução , Estresse Oxidativo , Raios Ultravioleta
11.
J Colloid Interface Sci ; 538: 559-568, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30551068

RESUMO

In an effort to contribute to research in scalable production systems for polymeric delivery systems loaded with antimicrobial peptides (AMPs), we here investigate effects of hydrodynamic flow conditions on microfluidic particle generation. For this purpose, rapid prototyping using 3D printing was applied to prepare micromixers with three different geometric designs, which were used to prepare Ca2+-cross-linked alginate microgels loaded with the AMP polymyxin B in a continuous process. Based on fluid dynamic simulations, the hydrodynamic flow patterns in the micromixers were designed to be either (i) turbulent with chaotic disruption, (ii) laminar with convective mixing, or (iii) convective with microvortex formation. The physicochemical properties of the microgels prepared with these micromixers were characterized by photon correlation spectroscopy, laser-Doppler micro-electrophoresis, small-angle x-ray scattering, and ellipsometry. The particle size and compactness were found to depend on the micromixer geometry: From such studies, particle size and compactness were found to depend on micromixer geometry, the smallest and most compact particles were obtained by preparation involving microvortex flows, while larger and more diffuse microgels were formed upon laminar mixing. Polymyxin B was found to be localized in the particle interior and to cause particle growth with increasing peptide loading. Ca2+-induced cross-linking of alginate, in turn, results in particle contraction. The peptide encapsulation efficiency was found to be higher than 80% for all investigated micromixer designs; the highest encapsulation efficiency observed for the smallest particles generated by microvortex-mediated self-assembly. Ellipsometry results for surface-immobilized microgels, as well as results on peptide encapsulation, demonstrated electrolyte-induced peptide release. Taken together, these findings demonstrate that rapid prototyping of microfluidics using 3D-printed micromixers offers promises for continuous manufacturing of AMP-loaded microgels. Although the micromixer combining turbulent flow and microvortexes was demonstrated to be the most efficient, all three micromixer designs were found to mediate self-assembly of small microgels displaying efficient peptide encapsulation. This demonstrates the robustness of employing 3D-printed micromixers for microfluidic assembly of AMP-loaded microgels during continuous production.


Assuntos
Técnicas Analíticas Microfluídicas , Peptídeos/química , Impressão Tridimensional , Cálcio/química , Desenho de Equipamento , Géis/síntese química , Géis/química , Tamanho da Partícula , Cloreto de Sódio/química , Propriedades de Superfície
12.
J Appl Crystallogr ; 51(Pt 6): 1623-1632, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30546289

RESUMO

Coupling of size-exclusion chromatography with biological solution small-angle X-ray scattering (SEC-SAXS) on dedicated synchrotron beamlines enables structural analysis of challenging samples such as labile proteins and low-affinity complexes. For this reason, the approach has gained increased popularity during the past decade. Transportation of perishable samples to synchrotrons might, however, compromise the experiments, and the limited availability of synchrotron beamtime renders iterative sample optimization tedious and lengthy. Here, the successful setup of laboratory-based SEC-SAXS is described in a proof-of-concept study. It is demonstrated that sufficient quality data can be obtained on a laboratory instrument with small sample consumption, comparable to typical synchrotron SEC-SAXS demands. UV/vis measurements directly on the SAXS exposure cell ensure accurate concentration determination, crucial for direct molecular weight determination from the scattering data. The absence of radiation damage implies that the sample can be fractionated and subjected to complementary analysis available at the home institution after SEC-SAXS. Laboratory-based SEC-SAXS opens the field for analysis of biological samples at the home institution, thus increasing productivity of biostructural research. It may further ensure that synchrotron beamtime is used primarily for the most suitable and optimized samples.

13.
Sci Adv ; 2(12): e1601432, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27957539

RESUMO

In the dense and crowded environment of the cell cytoplasm, an individual protein feels the presence of and interacts with all surrounding proteins. While we expect this to strongly influence the short-time diffusion coefficient Ds of proteins on length scales comparable to the nearest-neighbor distance, this quantity is difficult to assess experimentally. We demonstrate that quantitative information about Ds can be obtained from quasi-elastic neutron scattering experiments using the neutron spin echo technique. We choose two well-characterized and highly stable eye lens proteins, bovine α-crystallin and γB-crystallin, and measure their diffusion at concentrations comparable to those present in the eye lens. While diffusion slows down with increasing concentration for both proteins, we find marked variations that are directly linked to subtle differences in their interaction potentials. A comparison with computer simulations shows that anisotropic and patchy interactions play an essential role in determining the local short-time dynamics. Hence, our study clearly demonstrates the enormous effect that weak attractions can have on the short-time diffusion of proteins at concentrations comparable to those in the cellular cytosol.


Assuntos
Cristalinas/química , Citoplasma/química , Difusão , Animais , Bovinos , Simulação por Computador
14.
J Phys Chem Lett ; 7(9): 1610-5, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27077243

RESUMO

Investigating proteins with techniques such as NMR or neutron scattering frequently requires the partial or complete substitution of D2O for H2O as a solvent, often tacitly assuming that such a solvent substitution does not significantly alter the properties of the protein. Here, we report a systematic investigation of the solvent isotope effect on the phase diagram of the lens protein γB-crystallin in aqueous solution as a model system exhibiting liquid-liquid phase separation. We demonstrate that the observed strong variation of the critical temperature Tc can be described by the extended law of corresponding states for all H2O/D2O ratios, where scaling of the temperature by Tc or the reduced second virial coefficient accurately reproduces the binodal, spinodal, and osmotic compressibility. These findings highlight the impact of H2O/D2O substitution on γB-crystallin properties and warrant further investigations into the universality of this phenomenon and its underlying mechanisms.


Assuntos
Óxido de Deutério/química , gama-Cristalinas/química , Solventes/química , Temperatura , Água/química , gama-Cristalinas/isolamento & purificação
15.
Mol Cell Endocrinol ; 430: 138-45, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26845344

RESUMO

The intronic SNP rs7903146 in the T-cell factor 7-like 2 gene (TCF7L2) is the common genetic variant most highly associated with Type 2 diabetes known to date. The risk T-allele is located in an open chromatin region specific to human pancreatic islets of Langerhans, thereby accessible for binding of regulatory proteins. The risk T-allele locus exhibits stronger enhancer activity compared to the non-risk C-allele. The aim of this study was to identify transcriptional regulators that bind the open chromatin region in the rs7903146 locus and thereby potentially regulate TCF7L2 expression and activity. Using affinity chromatography followed by Edman sequencing, we identified one candidate regulatory protein, i.e. high-mobility group protein B1 (HMGB1). The binding of HMGB1 to the rs7903146 locus was confirmed in pancreatic islets from human deceased donors, in HCT116 and in HEK293 cell lines using: (i) protein purification on affinity columns followed by Western blot, (ii) chromatin immunoprecipitation followed by qPCR and (iii) electrophoretic mobility shift assay. The results also suggested that HMGB1 might have higher binding affinity to the C-allele of rs7903146 compared to the T-allele, which was supported in vitro using Dynamic Light Scattering, possibly in a tissue-specific manner. The functional consequence of HMGB1 depletion in HCT116 and INS1 cells was reduced insulin and TCF7L2 mRNA expression, TCF7L2 transcriptional activity and glucose stimulated insulin secretion. These findings suggest that the rs7903146 locus might exert its enhancer function by interacting with HMGB1 in an allele dependent manner.


Assuntos
Loci Gênicos , Proteína HMGB1/metabolismo , Ilhotas Pancreáticas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Animais , Simulação por Computador , DNA/metabolismo , Difusão Dinâmica da Luz , Células HCT116 , Células HEK293 , Humanos , Hidrodinâmica , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reprodutibilidade dos Testes
16.
J Phys Chem Lett ; 6(22): 4470-4, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26505877

RESUMO

The globular protein γB-crystallin exhibits a complex phase behavior, where liquid-liquid phase separation characterized by a critical volume fraction ϕc = 0.154 and a critical temperature Tc = 291.8 K coexists with dynamical arrest on all length scales at volume fractions around ϕ ≈ 0.3-0.35, and an arrest line that extends well into the unstable region below the spinodal. However, although the static properties such as the osmotic compressibility and the static correlation length are in quantitative agreement with predictions for binary liquid mixtures, this is not the case for the dynamics of concentration fluctuations described by the dynamic structure factor S(q,t). Using a combination of dynamic light scattering and neutron spin echo measurements, we demonstrate that the competition between critical slowing down and dynamical arrest results in a much more complex wave vector dependence of S(q,t) than previously anticipated.


Assuntos
Proteínas/química , gama-Cristalinas/química , Animais , Bovinos , Dobramento de Proteína , Soluções
17.
Proc Natl Acad Sci U S A ; 111(47): 16748-53, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385638

RESUMO

We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.


Assuntos
Cristalino/metabolismo , alfa-Cristalinas/metabolismo , Animais , Bovinos , Espalhamento de Radiação , Viscosidade , alfa-Cristalinas/química
18.
J Phys Chem B ; 115(22): 7227-37, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21528887

RESUMO

We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than ϕ ≳ 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at ϕ > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at ϕ ≃ 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales.


Assuntos
Muramidase/química , Análise por Conglomerados , Nêutrons , Espalhamento a Baixo Ângulo , Soluções/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA