Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(6): 1148-1155, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38947209

RESUMO

Electron transport chains (ETCs) are ubiquitous in nearly all living systems. Replicating the complexity and control inherent in these multicomponent systems using ensembles of small molecules opens up promising avenues for molecular therapeutics, catalyst design, and the development of innovative energy conversion and storage systems. Here, we present a noncovalent, multistep artificial electron transport chains comprising cyclo[8]pyrrole (1), a meso-aryl hexaphyrin(1.0.1.0.1.0) (naphthorosarin 2), and the small molecules I2 and trifluoroacetic acid (TFA). Specifically, we show that 1) electron transfer occurs from 1 to give I3 - upon the addition of I2, 2) proton-coupled electron transfer (PCET) from 1 to give H 3 2 •2+ and H 3 2 + upon the addition of TFA to a dichloromethane mixture of 1 and 2, and 3) that further, stepwise treatment of 1 and 2 with I2 and TFA promotes electron transport from 1 to give first I3 - and then H 3 2 •2+ and H 3 2 + . The present findings are substantiated through UV-vis-NIR, 1H NMR, electron paramagnetic resonance (EPR) spectroscopic analyses, cyclic voltammetry studies, and DFT calculations. Single-crystal structure analyses were used to characterize compounds in varying redox states.

2.
Dalton Trans ; 53(17): 7498-7516, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38596893

RESUMO

Recent advances in visible light photocatalysis represent a significant stride towards sustainable catalytic chemistry. However, its successful implementation in fine chemical production remains challenging and requires careful optimization of available photocatalysts. Our work aims to structurally modify bioinspired porphyrin catalysts, addressing issues related to their laborious synthesis and low solubility, with the goal of increasing their efficiency and developing reusable catalytic systems. We have demonstrated the catalytic potential of readily available meso-tetrakis[4-(diethoxyphosphoryl)phenyl]porphyrins (M(TPPP)). Novel metal (Pd(II), Co(II) and In(III)) complexes with this ligand were prepared in good yields. These chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence) and electrochemical methods. The introduction of phosphonate groups on the phenyl substituents of meso-tetraphenylporphyrins (M(TPP)) improves solubility in polar organic solvents without significantly altering the photophysical properties and photostability of complexes. This structural modification also leads to easier reductions and harder oxidations of the macrocycle for all investigated complexes compared to the corresponding TPP derivatives. The free base porphyrin, zinc(II), palladium(II), and indium(III) complexes were studied as photocatalysts for oxidation of sulfides to sulfoxides using molecular oxygen as a terminal oxidant. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under blue LED irradiation in the acetonitrile-water mixture (10 : 1 v/v) with a low loading (0.005-0.05 mol%) of porphyrin photocatalysts, where H2(TPPP) and Pd(TPPP) were found to be the most efficient. The reaction mechanism was studied using photoluminescence and EPR spectroscopies. Then, to access reusable catalysts, water-soluble derivatives bearing phosphonic acid groups, H2(TPPP-A) and Pd(TPPP-A), were prepared in high yields. These compounds were characterized using spectroscopic methods. Single-crystal X-ray diffraction analysis of Pd(TPPP-A) reveals that the complex forms a 3D hydrogen-bonded organic framework (HOF) in the solid state. Both H2(TPPP-A) and Pd(TPPP-A) were found to catalyze the photooxidation of sulfides by molecular oxygen in the acetonitrile-water mixture (1 : 1 v/v), while only Pd(TPPP-A) resulted in selective production of sulfoxides. The complex Pd(TPPP-A) was easily recovered through extraction in the aqueous phase and successfully reused in five consecutive cycles of the sulfoxidation reaction.

3.
Chemistry ; 30(3): e202302714, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37983723

RESUMO

Metal imine-thiolate complexes, M(NS)2 are known to undergo imine C-C bond formation to give M(N2 S2 ) complexes (M=Co, Ni) containing a redox-active ligand. Although these transfor-mations are not typically quantitative, we demonstrate here that the one-electron reduction of a related Ni bis(imine-thiolate) complex affords the corresponding paramagnetic [Ni(N2 S2 )]- anion (2⋅- ) exclusively; subsequent oxidation with [Cp2 Fe]BF4 then affords a high yield of neutral 2 (Cp=η5 -cyclopentadienyl). Moreover, electrochemical studies indicate that a second one-electron reduction affords the diamagnetic dianion. Both anionic products were isolated and characterized by SC-XRD and their electronic structures were investigated by UV-vis spectro-electrochemistry, EPR and NMR spectroscopy, and DFT studies. These studies show that reduction proceeds primarily on the ligand, with (N2 S2 )4- containing both thiolate and ring-delocalized anions.

4.
Angew Chem Int Ed Engl ; 63(2): e202315985, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009627

RESUMO

Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).

5.
Chemistry ; 29(49): e202301357, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272206

RESUMO

This study presents the synthesis, the spectroscopic and electrochemical properties of new bis- and tetra-substituted azaboron-dipyrromethene (aza-BODIPY) dyes substituted by different electron donating groups connected to the aza-BODIPY core through a thiophene unit. In line with theoretical calculations, experimental measurements point out the positive impact of the thiophene group that behave as a secondary donor group leading to an enhancement of the intramolecular charge transfer process in comparison to previously reported aza-BODIPY dyes. This heterocycle has also been found to tune the oxidative potential and to stabilize the electro-generated species.

6.
Inorg Chem ; 62(13): 5067-5080, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541863

RESUMO

Aza-boron-dipyrromethenes (Aza-BODIPYs) are an increasingly studied class of fluorophores. They can be seen as an azadipyrromethene ("aza-DIPY") ligand rigidified by a metalloid, a boron atom. Based on this idea, a series of complexes of group 13 metals (aluminum and gallium) have been synthesized and characterized. The impact of the metal and of the nature of the substituents of aza-DIPY core were investigated. The photophysical and electrochemical properties were determined, and an X-ray structure of an azaGaDIPY was obtained. These data reveal that azaGaDIPY and azaAlDIPY exhibit significant red-shifted fluorescence compared to their analogue aza-BODIPY. Their emission can go up to 800 nm for the maximum emission length and up to NIR-II for the emission tail. This, associated with their electrochemical stability (no metal release whether oxidized or reduced) makes them a promising class of fluorophores for optical medical imaging. Moreover, X-ray structure and molecular modeling studies have shown that this redshift seems to be more due to the geometry around the boron/metal than to the nature of the metal.

7.
Angew Chem Int Ed Engl ; 62(7): e202212782, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36548129

RESUMO

Two mononuclear ferric complexes are reported that respond to a pH change with a 27- and 71-fold jump, respectively, in their capacity to accelerate the longitudinal relaxation rate of water-hydrogen nuclei, and this starting from a negligible base value of only 0.06. This unprecedented performance bodes well for tackling the sensitivity issues hampering the development of Molecular MRI. The two chelates also excel in the fully reversible and fatigue-less nature of this phenomenon. The structural reasons for this performance reside in the macrocyclic nature of the hexa-dentate ligand, as well as the presence of a single pendant arm displaying a five-membered lactam or carbamate which show (perturbed) pKa values of 3.5 in the context of this N6 ⇔ ${ \Leftrightarrow }$ N5O1 coordination motif.

8.
Angew Chem Int Ed Engl ; 62(3): e202209102, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36301016

RESUMO

Ammonia, NH3 , is an essential molecule, being part of fertilizers. It is currently synthesized via the Haber-Bosch process, from the very stable dinitrogen molecule, N2 and dihydrogen, H2 . This process requires high temperatures and pressures, thereby generating ca 1.6 % of the global CO2 emissions. Alternative strategies are needed to realize the functionalization of N2 to NH3 under mild conditions. Here, we show that boron-centered radicals provide a means of activating N2 at room temperature and atmospheric pressure whilst allowing a radical process to occur, leading to the production of borylamines. Subsequent hydrolysis released NH4 + , the acidic form of NH3 . EPR spectroscopy supported the intermediacy of radicals in the process, corroborated by DFT calculations, which rationalized the mechanism of the N2 functionalization by R2 B radicals.

9.
J Am Chem Soc ; 144(39): 17955-17965, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154166

RESUMO

We herein report the synthesis and magnetic properties of a Ni(II)-porphyrin tethered to an imidazole ligand through a flexible electron-responsive mechanical hinge. The latter is capable of undergoing a large amplitude and fully reversible folding motion under the effect of electrical stimulation. This redox-triggered movement is exploited to force the axial coordination of the appended imidazole ligand onto the square-planar Ni(II) center, resulting in a change in its spin state from low spin (S = 0) to high spin (S = 1) proceeding with an 80% switching efficiency. The driving force of this reversible folding motion is the π-dimerization between two electrogenerated viologen cation radicals. The folding motion and the associated spin state switching are demonstrated on the grounds of NMR, (spectro)electrochemical, and magnetic data supported by quantum calculations.


Assuntos
Níquel , Porfirinas , Estimulação Elétrica , Imidazóis , Ligantes , Níquel/química , Viologênios
10.
Dalton Trans ; 51(36): 13612-13630, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35833669

RESUMO

Ru(II) complexes with polypyridyl ligands play a central role in the development of photocatalytic organic reactions. This work is aimed at the structural modification of such complexes to increase their photocatalytic efficiency and adapt them for the preparation of reusable photocatalytic systems. Nine [Ru(phen)(bpy)2]2+-type complexes (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) (Ru-Pcat) bearing the P(O)(OEt)2 substituent attached to the phen core directly or through a 1,4-phenylene linker were synthesized and characterized by spectroscopic and electrochemical techniques. The coordination mode of phen ligands was confirmed by single crystal X-ray analysis. The (spectro)electrochemical data show that the first electron transfer in Ru-Pcat takes place on the phen ligand. The emission maxima and quantum yields are strongly affected by the substitution pattern, reaching the far-red region (697 nm) for Ru-3,8P2. The singlet oxygen quantum yields of Ru-Pcat were evaluated using the chemical trapping method. Finally, the photocatalytic performance of Ru-Pcat in the oxidation of sulfides with molecular oxygen was investigated. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under irradiation with a blue LED in the acetonitrile-water mixture (10 : 1) using a low loading of 0.005-0.05 mol% Ru(II) photocatalysts. To rationalize the effect of phosphonate substituents on the photocatalytic efficiency, comparative kinetic studies of (1) 4-nitrothioanisole oxidation proceeding predominantly via the electron transfer pathway and (2) oxidation of dibutyl sulfide wherein singlet oxygen serves as an oxidant have been performed. It was demonstrated that complexes with the P(O)(OEt)2 substituent at positions 4 and 7 outperform the benchmark photocatalyst Ru-(bpy)3 and the parent complex Ru-phen in the reactions proceeding through electron transfer (reductive quenching photocatalytic cycle). The TON in the oxidation of 4-methoxythioanisole was found to be as high as 1 000 000 that is, to our knowledge, the highest among previously reported photocatalysts. In contrast, upon separating the P(O)(OEt)2 group and the phen core with the 1,4-phenylene linker, singlet oxygen quantum yields significantly increase that favors reactions proceeding through energy transfer (the oxidation of dibutyl sulfide in our case). Thus, both series of Ru(II) complexes prepared in this work are promising for the improvement of known photocatalytic reactions and the development of new transformations.

11.
Acc Chem Res ; 55(12): 1646-1658, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35500276

RESUMO

"Functional molecular systems", discrete and self-assembled constructs where control over molecular recognition, structure, bonding, transport, release, catalytic activity, etc., is readily achieved, are a topic of current interest. Within this broad paradigm, oligopyrrolic cages have garnered attention due to their responsive recognition features. Due to the presence of slightly polar pyrrole subunits which can also behave as hydrogen-bonding donors, these oligopyrrolic cages are potential receptors for various polarized species. In this Account, we summarize recent advances involving the syntheses and study of (1) covalent oligopyrrolic macrobicyclic cages, (2) oligopyrrolic metallacages, and (3) oligopyrrolic noncovalently linked cages. Considered in concert, these molecular constructs have allowed advances in applied supramolecular chemistry; to date, they have been exploited for selective guest encapsulation studies, anion binding and ion-channel formation, and gas absorption, among other applications. While key findings from others will be noted, in this Account will focus on our own contributions to the chemistry of discrete oligopyrrolic macrocycles and their use in supramolecular host-guest chemistry and sensing applications. In terms of specifics, we will detail how oligopyrrole cages with well-defined molecular geometries permit reversible guest binding under ambient conditions and how the incorporation of pyrrole subunits within larger superstructures allows effective control over anion/conjugate acid binding activity under ambient conditions. We will also provide examples that show how derivatization of these rudimentary macrocyclic cores with various sterically congested ß-substituted oligopyrroles can provide entry into more complex supramolecular architectures. In addition, we will detail how hybrid systems that include heterocycles other than pyrrole, such as pyridine and naphthyridine, can be used to create self-assembled materials that show promise as gas-absorbing materials and colorimetric reversible sensors. Studies involving oligopyrrolic polymetallic cages and oligopyrrolic supramolecular cages will also be reviewed. First, we will discuss all-carbon-linked oligopyrrolic bicycles and continue on to present systems linked via amines and imines linkages. Finally, we will summarize recent work on pyrrolic cages created through the use of metal centers or various noncovalent interactions. We hope that this Account will provide researchers with an initial foundation for understanding oligopyrrolic cage chemistry, thereby allowing for further advances in the area. It is expected that the fundamental design and recognition principles made in the area of oligopyrrole cages, as exemplified by our contributions, will be of general use to researchers targeting the design of functional molecular systems. As such, we have structured this Account so as to summarize the past while setting the stage for the future.


Assuntos
Pirróis , Ânions , Ligação de Hidrogênio
12.
Chemphyschem ; 23(9): e202200004, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35175689

RESUMO

The optical and redox properties of a methyl pyridinium appended 1,2-dithienylethene photochromic derivative have been thoroughly investigated. A complex multi-step photo/redox mechanism is proposed for the closed isomer on the ground of spectro-electrochemical and theoretical data. The generated compounds are not stable over the time because of chemical reactions associated to the redox processes and a new dithienylethene derivative incorporating a seven-membered ring has been isolated and characterized.


Assuntos
Ciclopentanos , Isomerismo , Oxirredução
13.
J Phys Chem B ; 125(43): 12063-12071, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677961

RESUMO

Ditopic bis-(triazole/pyridine)viologens are bidentate ligands that self-assemble into coordination polymers. In such photo-responsive materials, light irradiation initiates photo-induced electron transfer to generate π-radicals that can self-associate to form π-dimers. This leads to a cascade of events: processes at the supramolecular scale associated with mechanical and structural transition at the macroscopic scale. By tuning the irradiation power and duration, we evidence the formation of aggregates and gels. Using microscopy, we show that the aggregates are dense, polydisperse, micron-sized, spindle-shaped particles which grow in time. Using microscopy and time-resolved micro-rheology, we follow the gelation kinetics which leads to a gel characterized by a correlation length of a few microns and a weak elastic modulus. The analysis of the aggregates and the gel states vouch for an arrested phase separation process, a new scenario to supramolecular systems.

14.
Angew Chem Int Ed Engl ; 60(37): 20210-20214, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34213041

RESUMO

Catalytic formation of borylamines from atmospheric N2 is achieved for the first time using a series of homogenous (triphosphine)Mo complexes. Stepwise functionalization of the (triphosphine)Mo-nitrido complex with chloroborane led to the synthesis of the imido complex. Electrochemical characterization of the (PPP)Mo-nitrido and (PPP)Mo-borylimido complexes showed that the latter is much more easily reduced.

15.
Org Lett ; 23(14): 5283-5287, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33851849

RESUMO

A viologen-phenylene-imidazole (VPI) conjugate, previously shown to be singly complexed by CB[7] and doubly bound by CB[8], is herein shown to form antiparallel triple stacks in water with cucurbit[10]uril (CB[10]), pairwise complexing the guest trimer. The quinary host:guest 2:3 complex showed features assignable to charge-transfer interactions. Under reductive conditions, CB[10] could solubilize a VPI radical, even though CB[10] and reduced VPI are almost insoluble, thereby illustrating a possible new application for CB[10].

16.
Inorg Chem ; 60(6): 3543-3555, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33620206

RESUMO

A metal-induced self-assembly strategy is used to promote the π-dimerization of viologen-based radicals at room temperature and in standard concentration ranges. Discrete box-shaped 2:2 (M:L) macrocycles or coordination polymers are formed in solution by self-assembly of a viologen-based ditopic ligand with cis-[Pd(en)(NO3)2], trans-[Pd(CH3CN)2(Cl)2], or [Pd(CH3CN)4(BF4)2]. Changing the redox state of the bipyridium units involved in the tectons, from their dicationic state to their radical cation state, results in a reversible "inflation/deflation" of the discrete 2:2 (M:L) macrocyclic assemblies associated to a large modification in the size of their inner cavity. Viologen-centered electron transfer is also used to trigger a dissociation of the coordination polymers formed with tetrakis(acetonitrile)Pd(II), the driving force of the disassembling process being the formation of discrete box-shaped 2:2 (M:L) assemblies stabilized by π-dimerization of both viologen cation radicals.

17.
ACS Appl Mater Interfaces ; 13(1): 688-695, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356092

RESUMO

The development of heterogeneous catalysts capable of selectively converting lignin model compounds into products of added value offers an exciting avenue to explore in the production of renewable chemical feedstocks. The use of metal-organic frameworks (MOFs) in such chemical transformations relies largely on the presence of accessible open metal sites found within highly porous networks that simultaneously allow for fast transport and strong interactions with desired substrates. Here, we present the first systematic study on the modulation of catalytic performance of a cationic framework, [Cu2(L)(H2O)2](NO3)2·5.5H2O (L = 1,1'-bis(3,5-dicarboxylatophenyl)-4,4'-bipyridinium), achieved through the exchange of anionic guests. Remarkably, the catalytic activity proves to be highly anion-dependent, with a nearly 10-fold increase toward the aerobic C-C bond cleavage of a lignin model compound when different anionic species are incorporated within the MOF. Moreover, we demonstrate that the cationic nature of the MOF, imparted by the incorporation of viologen moieties within the linker, tunes the electrophilicity of the active copper(II) sites, resulting in stronger interactions with the substrate. As such, the copper-based framework exhibits enhanced catalytic performance when compared to its neutral counterpart, emphasizing the appeal of charged frameworks for use as green heterogeneous catalysts.

18.
Chemistry ; 26(69): 16455-16462, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762122

RESUMO

Donor-acceptor interactions are ubiquitous in the design and understanding of host-guest complexes. Despite their non-covalent nature, they can readily dictate the self-assembly of complex architectures. Here, a photo-/redox-switchable metal-organic nanocapsule is presented, which was assembled by using lanthanide ions and viologen building blocks, by relying on such donor-acceptor interactions. The potential of this unique barrel-shaped structure is highlighted for the encapsulation of suitable electron donors, akin to the well-investigated "blue-box" macrocycles. The light-triggered reduction of the viologen units has been investigated by single-crystal-to-single-crystal X-ray diffraction experiments, complemented by magnetic, optical, and solid-state electrochemical characterizations. Density functional theory (DFT) calculations were employed to suggest the most likely electron donor in the light-triggered reduction of the viologen-based ligand.

19.
J Inorg Biochem ; 205: 110978, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951911

RESUMO

Based on our previous works involving two 1,4,7-triazacyclononane (tacn)-based ligands Hno2py1pa (1-Picolinic acid-4,7-bis(pyridin-2-ylmethyl)-1,4,7-triazacyclononane) and Hno1pa (1-Picolinic acid-1,4,7-triazacyclononane), we report here the synthesis of analogues bearing picolinate-based π-conjugated ILCT (Intra-Ligand Charge Transfer) transition antenna (HL1, HL2), using regiospecific N-functionalization of the tacn skeleton and their related transition metal complexes (e.g. Cu2+, Zn2+ and Mn2+). Coordination properties as well as their photophysical and electrochemical properties were investigated in order to quantify the impact of such antenna on the luminescent or relaxometric properties of the complexes. The spectroscopic properties of the targeted ligands and metal complexes have been studied using UV-Vis absorption and fluorescence spectrocopies. While the zinc complex formed with HL1 possesses a moderate quantum yield of 5%, complexation of Cu2+ led to an extinction of the luminescence putatively attributed to a photo-induced electron transfer, as supported by spectroscopic and electrochemical evidences. The [Mn(L2)]+ complex is characterized by a fluorescence quantum yield close to 8% in CH2Cl2. The potential interest of such systems as bimodal probes has been assessed from radiolabeling experiments conducted on HL1 and 64Cu2+ as well as confocal microscopy analyses and from relaxometric studies carried out on the cationic [Mn(L2)]+ complex. These results showed that HL1 can be used for radiolabeling, with a radiochemical conversion of 40% in 15 min at 100 °C. Finally, the relaxivity values obtained for [Mn(L2)]+, r1p = 4.80 mM-1·s-1 and r2p = 8.72 mM-1·s-1, make the Mn(II) complex an ideal candidate as a probe for Magnetic Resonance Imaging.


Assuntos
Complexos de Coordenação , Radioisótopos de Cobre/química , Modelos Moleculares , Ácidos Picolínicos/química , Compostos Radiofarmacêuticos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Marcação por Isótopo , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química
20.
J Am Chem Soc ; 141(51): 20026-20030, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31820955

RESUMO

With the help of a judicious association between dithienylethene (DTE) units, an ytterbium ion, and a ruthenium carbon-rich complex, we describe (i) the efficient (on/off) switching of pure NIR luminescence with a photochromic unit absorbing in the UV range and (ii) the association of electrochemical and photochemical control of this NIR emission in a single system with nondestructive readout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA