Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0128822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862962

RESUMO

Mycolic acids, a hallmark of the genus Mycobacterium, are unique branched long-chain fatty acids produced by a complex biosynthetic pathway. Due to their essentiality and involvement in various aspects of mycobacterial pathogenesis, the synthesis of mycolic acids-and the identification of the enzymes involved-is a valuable target for drug development. Although most of the core pathway is comparable between species, subtle structure differences lead to different structures delineating the mycolic acid repertoire of tuberculous and some nontuberculous mycobacteria. We here report the characterization of an α'-mycolic acid-deficient Mycobacterium smegmatis mutant obtained by chemical mutagenesis. Whole-genome sequencing and bioinformatic analysis identified a premature stop codon in MSMEG_4301, encoding an acyl-CoA synthetase. Orthologs of MSMEG_4301 are present in all mycobacterial species containing α'-mycolic acids. Deletion of the Mycobacterium abscessus ortholog MAB_1915 abrogated synthesis of α'-mycolic acids; likewise, deletion of MSMEG_4301 in an otherwise wild-type M. smegmatis background also caused loss of these short mycolates. IMPORTANCE Mycobacterium abscessus is a nontuberculous mycobacterium responsible for an increasing number of hard-to-treat infections due to the impervious nature of its cell envelope, a natural barrier to several antibiotics. Mycolic acids are key components of that envelope; thus, their synthesis is a valuable target for drug development. Our results identify the first enzyme involved in α'-mycolic acids, a short-chain member of mycolic acids, loss of which greatly affects growth of this opportunistic pathogen.


Assuntos
Mycobacterium abscessus , Mycobacterium , Vias Biossintéticas/genética , Ácidos Graxos/metabolismo , Mycobacterium/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo , Micobactérias não Tuberculosas
2.
Eur J Med Chem ; 207: 112821, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950907

RESUMO

Several phenanthrolinic analogs of quinolones have been synthesized and their antibacterial activity tested against Mycobacterium tuberculosis, other mycobacterial species and bacteria from other genera. Some of them show high activity (of the range observed for rifampicin) against M. tuberculosis replicating in vitro and in vivo (infected macrophages) conditions. These derivatives show the same activity with all or several M. tuberculosis complex bacterial mutants resistant to fluoroquinolones (FQ). This opens the way to the construction of new drugs for the treatment of FQ resistant bacterial infections, including tuberculosis. Several compounds showed also activity against Staphylococcus aureus and probably other species. These compounds do not show major toxicity. We conclude that the novel phenanthrolinic derivatives described here are potent hits for further developments of new antibiotics against bacterial infectious diseases including tuberculosis in particular those resistant to FQ.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Fenantrolinas/química , Quinolonas/química , Quinolonas/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana
3.
Microbiology (Reading) ; 164(12): 1567-1582, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30311878

RESUMO

Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.


Assuntos
Proteínas de Bactérias/genética , Metiltransferases/genética , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/virologia , Ácidos Micólicos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Temperatura Baixa , Metiltransferases/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mycobacterium smegmatis/fisiologia , Deleção de Sequência
4.
J Med Chem ; 60(17): 7425-7433, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28846409

RESUMO

In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Nitrorredutases/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Regulação para Baixo , Farmacorresistência Bacteriana , Humanos , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Mycobacterium/genética , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/genética , Nitrocompostos , Nitrorredutases/genética
5.
Bioorg Med Chem Lett ; 23(3): 740-3, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265903

RESUMO

A small series of C-cinnamoyl glycoside containing the phenol moiety was tested for the inhibition of the three Mycobacterium tuberculosis ß-carbonic anhydrases (CAs, EC 4.2.1.1) with activities in the low micromolar range detected. The compounds were also tested for the inhibition of growth of M. tuberculosis H(37)Rv strain, leading to the identification of (E)-1-(2',3',4',6'-tetra-O-acetyl-ß-D-glucopyranosyl)-4-(3-hydroxyphenyl)but-3-en-2-one (1) as the first carbonic anhydrase inhibitor with anti-tubercular activity.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Glucosídeos/síntese química , Glucosídeos/farmacologia , Glicosídeos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Inibidores da Anidrase Carbônica/química , Cinamatos/química , Glucosídeos/química , Estrutura Molecular , Relação Estrutura-Atividade
6.
Microbiol Res ; 166(5): 380-90, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20869215

RESUMO

Choline favors the pathogenesis of Pseudomonas aeruginosa because hemolytic phospholipase C and phosphorylcholine phosphatase (PchP) are synthesized as a consequence of its catabolism. The experiments performed here resulted in the identification of the factors that regulate both the catabolism of choline and the gene coding for PchP. We have also identified and characterized the promoter of the pchP gene, its transcriptional organization and the factors that affect its expression. Deletion analyses reveal that the region between -188 and -68 contains all controlling elements necessary for pchP expression: a hypothetical -12/-24 promoter element, a consensus sequence for the integration host factor (-141/-133), and a palindromic sequence resembling a binding site for a potential enhancer binding protein (-190/-174). Our data also demonstrate that choline catabolism and NtrC (nitrogen regulatory protein) are necessary for the full expression of pchP and is partially dependent on σ(54) factor.


Assuntos
Colina/metabolismo , Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Polimerase Sigma 54/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Fosforilcolina , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , RNA Polimerase Sigma 54/genética , Deleção de Sequência , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA