Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 20(2): 113-25, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15336280

RESUMO

The physical activity in normal daily life is determined to a large extent by the functional ability of a subject. As a result, the measurement of the physical activity that a subject performs spontaneously could be a useful and objective measurement of disability, particularly in patients with disease-related functional impairment. The aim of this study is to provide an accurate method for the measurement and analysis of the physical activity under normal life conditions. Using three kinematical sensors strapped to the body, both the posture and the gait parameters can be assessed qualitatively and quantitatively. A detailed description of the algorithms used to analyse both the posture and the gait are presented in this paper. Two methods, based on different sensor configurations and signal processing, are proposed for the detection of sitting and standing postures (Methods P1 and P2). Two other methods are used for the quantitative assessment of walking (Methods W1 and W2). The performance of the algorithms (expressed in terms of sensitivity, specificity and error) is based on the comparison of data recorded simultaneously by a non-interfering observer (reference data) with the data provided by the recording system (21 patients, 61 h). Sensitivity and specificity are respectively 98.2% and 98.8% (P1), 97.8% and 98.1% (P2) for sitting; 98.0% and 98.5% (P1), 97.4% and 97.8% (P2) for standing; 97.1% and 97.9% (W1), 92.4% and 94.9% (W2) for walking; and finally, 99.2% and 98.6% for lying. Overall detection errors (as a percent of range) are as follows: 1.15% (P1) and 1.20% (P2) for sitting, 1.36% (P1) and 1.40% (P2) for standing, 1.20% (W1) and 1.60% (W2) for walking and 0.40% for lying. The error for the estimated walking distance and the speed is 6.8% and 9.6%, respectively. We conclude that both methods can be used for the accurate measurement of the basic physical activity in normal daily life. Measurements performed before and after the delivery of a treatment can therefore provide information of unprecedented accuracy and objectivity on the ability of a procedure, in this case spinal cord stimulation, to restore functional capabilities.


Assuntos
Marcha/fisiologia , Monitorização Ambulatorial/métodos , Manejo da Dor , Dor/fisiopatologia , Postura/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Terapia por Estimulação Elétrica , Humanos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Medula Espinal , Caminhada/fisiologia
2.
Med Biol Eng Comput ; 37(3): 304-8, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10505379

RESUMO

The objective of this feasibility study is to evaluate the use of the 'Physilog' device, an ambulatory physical-activity recorder based on acceleration measurement, for the monitoring of daily physical activities. Accelerations measured at the level of the chest and the thigh are recorded by Physilog over a period of 1 h in five normal subjects. A specially designed studio-like room allowing the performance of most usual activities of everyday life is used. A video film synchronised with the Physilog is obtained for each subject to check the accuracy of the data derived from Physilog. Based on the analysis on the average and the deviation of the acceleration signal, an algorithm is developed to classify the activities in four categories, i.e. lying, sitting, standing and locomotion. Compared with the video observations, the results from the algorithm show an overall misclassification of 10.7%, which is mainly due to confusion between dynamic activities and the standing posture. In contrast, the misclassification between postures is negligible. It is concluded that Physilog can be used in the clinical setting for the reliable measurement and long-term recording of most usual physical activities.


Assuntos
Atividades Cotidianas , Monitorização Fisiológica/instrumentação , Movimento/fisiologia , Redes Neurais de Computação , Algoritmos , Humanos , Monitorização Fisiológica/métodos , Reprodutibilidade dos Testes , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA