Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(26): 5100-5114, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38915245

RESUMO

Blue organic light-emitting diodes (OLED) suffer from relatively short lifetimes and a comparatively low lighting efficiency. One of the approaches to improving their characteristics is the development of luminophores with the potential for thermally activated delayed fluorescence (TADF). Herein, a set of donor-spacer-acceptor compounds with potential for TADF are designed, synthesized, and computationally and spectroscopically characterized. The excited state dynamics of the most prospective dye is monitored by time-resolved fluorescence and transient absorption spectroscopy. The experimental data are obtained and processed by a newly developed method and supplemented by quantum chemical calculations. The comprehensive approach allowed rationalization of the complex cascade-type photophysical behavior. The most promising emitter is included in an OLED displaying a blue color with a maximum EQE of 4.9% and negligible efficiency roll-off at higher luminance.

2.
Opt Express ; 31(12): 18765-18772, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381309

RESUMO

We demonstrate a high-energy, 1 kilohertz, Yb-based, femtosecond regenerative amplifier in a chirped pulse amplification (CPA) architecture by using a single disordered Yb:CALYO crystal, providing 125 fs pulses of 2.3 mJ energy per pulse at a central wavelength of 1039 nm. The amplified compressed pulses, with a spectral bandwidth of 13.6 nm, represent the shortest ultrafast pulse duration reported to date for any multi-millijoule class,Yb-crystalline classical CPA system without additional spectral broadening techniques. We have demonstrated an increase in the gain bandwidth proportionally to the ratio of the excited to total Yb3+ ion densities. A net wider spectrum of the amplified pulses is the result of the interplay between the increased gain bandwidth and the gain narrowing. Finally, our broadest amplified spectrum of 16.6 nm, corresponding to a 96 fs transform limited pulse, can be expanded further to support sub-100 fs pulse durations and 1-10 mJ energies at 1 kHz.

3.
Materials (Basel) ; 15(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806794

RESUMO

Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.

4.
Polymers (Basel) ; 14(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808630

RESUMO

Temporary scaffolds that mimic the extracellular matrix's structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity-the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix.

5.
Polymers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35745958

RESUMO

Developing antimicrobial surfaces that combat implant-associated infections while promoting host cell response is a key strategy for improving current therapies for orthopaedic injuries. In this paper, we present the application of ultra-short laser irradiation for patterning the surface of a 3D biodegradable synthetic polymer in order to affect the adhesion and proliferation of bone cells and reject bacterial cells. The surfaces of 3D-printed polycaprolactone (PCL) scaffolds were processed with a femtosecond laser (λ = 800 nm; τ = 130 fs) for the production of patterns resembling microchannels or microprotrusions. MG63 osteoblastic cells, as well as S. aureus and E. coli, were cultured on fs-laser-treated samples. Their attachment, proliferation, and metabolic activity were monitored via colorimetric assays and scanning electron microscopy. The microchannels improved the wettability, stimulating the attachment, spreading, and proliferation of osteoblastic cells. The same topography induced cell-pattern orientation and promoted the expression of alkaline phosphatase in cells growing in an osteogenic medium. The microchannels exerted an inhibitory effect on S. aureus as after 48 h cells appeared shrunk and disrupted. In comparison, E. coli formed an abundant biofilm over both the laser-treated and control samples; however, the film was dense and adhesive on the control PCL but unattached over the microchannels.

6.
Materials (Basel) ; 14(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947106

RESUMO

The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs-wood pile and snowflake-with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.

7.
Phys Chem Chem Phys ; 23(37): 20989-21000, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34519727

RESUMO

This article presents a study of the excited state relaxation dynamics of N-salicylidene-o-aminophenol (SOAP) in ethanol solution. Femtosecond transient absorption (TA) spectroscopy and theoretical calculations are used in combination to establish the mechanism of the excited state relaxation and type of molecular species involved in the accompanying phototransformations. TA spectra show that upon photoexcitation two SOAP tautomers (E-enol and Z-keto) interconvert by ESIPT. The molecule can subsequently isomerize to the E-keto form of SOAP. An intriguing observation is that the TA spectra of this compound in ethanol show modulations of the signal at the stimulated emission spectral range. It is found that these modulations are due to the coherence of the excited ensemble of molecules whose evolution over time represents a moving wave packet. After Fourier transform of the modulations, two characteristic frequencies are identified. These frequencies refer to the corresponding vibrational modes of the excited state and their nature is elucidated by DFT quantum chemical calculations. The obtained experimental and theoretical data reveal the nature of the vibronic coupling between the ground and excited state and the type of molecular vibrations involved in the molecular dynamics along the potential surface of the first excited state at the initial moment right after excitation. These vibrations characterize the starting point in the excited state dynamics of the molecule toward Z-E isomerization of the keto form of SOAP. This study provides a comprehensive picture of the dynamic processes taking place upon photoexcitation of the compound, which might enable control over the various relaxation channels.

8.
Polymers (Basel) ; 13(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34372179

RESUMO

The influence of ultra-short laser modification on the surface morphology and possible chemical alteration of poly-lactic acid (PLA) matrix in respect to the optimization of cellular and antibacterial behavior were investigated in this study. Scanning electron microscopy (SEM) morphological examination of the processed PLA surface showed the formation of diverse hierarchical surface microstructures, generated by irradiation with a range of laser fluences (F) and scanning velocities (V) values. By controlling the laser parameters, diverse surface roughness can be achieved, thus influencing cellular dynamics. This surface feedback can be applied to finely tune and control diverse biomaterial surface properties like wettability, reflectivity, and biomimetics. The triggering of thermal effects, leading to the ejection of material with subsequent solidification and formation of raised rims and 3D-like hollow structures along the processed zones, demonstrated a direct correlation to the wettability of the PLA. A transition from superhydrophobic (θ > 150°) to super hydrophilic (θ < 20°) surfaces can be achieved by the creation of grooves with V = 0.6 mm/s, F = 1.7 J/cm2. The achieved hierarchical architecture affected morphology and thickness of the processed samples which were linked to the nature of ultra-short laser-material interaction effects, namely the precipitation of temperature distribution during material processing can be strongly minimized with ultrashort pulses leading to non-thermal and spatially localized effects that can facilitate volume ablation without collateral thermal damage The obtained modification zones were analyzed employing Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Energy dispersive X-ray analysis (EDX), and optical profilometer. The modification of the PLA surface resulted in an increased roughness value for treatment with lower velocities (V = 0.6 mm/s). Thus, the substrate gains a 3D-like architecture and forms a natural matrix by microprocessing with V = 0.6 mm/s, F = 1.7 J/cm2, and V = 3.8 mm/s, F = 0.8 J/cm2. The tests performed with Mesenchymal stem cells (MSCs) demonstrated that the ultra-short laser surface modification altered the cell orientation and promoted cell growth. The topographical design was tested also for the effectiveness of bacterial attachment concerning chosen parameters for the creation of an array with defined geometrical patterns.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119832, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933940

RESUMO

The effect of luminescent enhancement under exchange of the auxiliary ligand in Europium(III) tris(1,3-diphenyl-1,3-propanedionato) monohydrate was investigated by steady-state and time-resolved transient absorption spectroscopy. The excited state relaxation dynamics of this complex was analysed through a comparison of the experimental data obtained for several model compounds, namely Eu(DBM)3·NH3, Eu(DBM)3.EDA, Eu(DBM)3.Phen, Al(DBM)3 and dibenzoylmethane (DBM) in various solutions and polymer matrices. The results show there is no linear relationship between enhancement of the emission quantum yield and the luminescent lifetime, which suggests that the auxiliary ligand reduces the rate of nonradiative relaxation of the lanthanide ion, but also affects the excited state energy transfer from ligand to metal ion. Transient absorption data shows a clear correlation between the efficiency of the energy transfer and the degree of triplet state population expressed by an amplification of the signal for its excited state absorption band on going from Eu(DBM)3·H2O to the Eu(DBM) = .L complex. The results show that this auxiliary ligand exchange acts as a "switch" turning the intersystem crossing on or off as a competitive pathway for excited state relaxation of the europium(III) complexes.

10.
Photobiomodul Photomed Laser Surg ; 38(11): 656-660, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33090930

RESUMO

Background: Cellular senescence is one of the major factors contributing to the aging process. Photobiomodulation (PBM) is known to trigger an array of cellular responses, but there are no data on how it affects the process of cellular senescence. In this study, we analyze the effect of PBM on the cellular senescence and telomere dynamics. Methods: Human dermal fibroblasts were irradiated by a panel of light-emitting diodes with 590 nm and dose 30 J/cm2 accumulated over 1200 sec repeated in 4-day cycle within 40 days. After the last cycle of PBM treatment, the difference in number of senescent cells between PBM treated groups end nontreated control groups was measured by senescent sensitive ß-galactosidase assay, and the difference in average telomere length between the experimental end control groups was analyzed using relative human telomere length quantitative Polymerase Chain Reaction (qPCR) assay. Results: After 10 cycles of irradiation, the percentage of senescent cells in PBM-treated cultures was 19.7% ± 4.5%, p < 0.05 smaller than the percentage of senescent cells in the control group, and their relative telomere length was 1.19 ± 0.09-fold, p < 0.05 greater than nontreated controls. Conclusions: Our study demonstrates for the first time that PBM with appropriate parameters can delay the attrition of the telomeres and the entry of cells into senescence, suggesting a potential involvement of telomerase reactivation. A hypothetical mechanism for this light-induced antiaging effect is discussed.


Assuntos
Telomerase , Encurtamento do Telômero , Senescência Celular , Fibroblastos/metabolismo , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
11.
Polymers (Basel) ; 11(2)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960362

RESUMO

Surface functionalization introduced by precisely-defined surface structures depended on the surface texture and quality. Laser treatment is an advanced, non-contact technique for improving the biomaterials surface characteristics. In this study, femtosecond laser modification was applied to fabricate diverse structures on biodegradable polymer thin films and their ceramic blends. The influences of key laser processing parameters like laser energy and a number of applied laser pulses (N) over laser-treated surfaces were investigated. The modification of surface roughness was determined by atomic force microscopy (AFM). The surface roughness (Rrms) increased from approximately 0.5 to nearly 3 µm. The roughness changed with increasing laser energy and a number of applied laser pulses (N). The induced morphologies with different laser parameters were compared via Scanning electron microscopy (SEM) and confocal microscopy analysis. The chemical composition of exposed surfaces was examined by FTIR, X-ray photoelectron spectroscopy (XPS), and XRD analysis. This work illustrates the capacity of the laser microstructuring method for surface functionalization with possible applications in improvement of cellular attachment and orientation. Cells exhibited an extended shape along laser-modified surface zones compared to non-structured areas and demonstrated parallel alignment to the created structures. We examined laser-material interaction, microstructural outgrowth, and surface-treatment effect. By comparing the experimental results, it can be summarized that considerable processing quality can be obtained with femtosecond laser structuring.

12.
Opt Express ; 24(25): 28491-28499, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958492

RESUMO

We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.

13.
Opt Express ; 23(4): 4614-9, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836498

RESUMO

Passive mode-locking of a Tm,Ho:KLu(WO(4))(2) laser operating at 2060 nm using different designs of InGaAsSb quantum-well based semiconductor saturable absorber mirrors (SESAMs) is demonstrated. The self-starting mode-locked laser delivers pulse durations between 4 and 8 ps at a repetition rate of 93 MHz with maximum average output power of 155 mW. Mode-locking performance of a Tm,Ho:KLu(WO(4))(2) laser is compared for usage of a SESAM to a single-walled carbon nanotube saturable absorber.

14.
Opt Express ; 22(22): 26872-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401834

RESUMO

We demonstrate passive mode-locking of a Tm,Ho-codoped crystalline laser operating on the Ho³âº-ion transition 5I7→5I8 near 2 µm using a single-walled carbon nanotube saturable absorber. The Tm,Ho:KLu(WO4)2 laser emits nearly transform-limited pulses with duration of 2.8 ps at a repetition rate of 91 MHz. The output power amounts to 97 mW.

15.
Opt Lett ; 38(17): 3347-9, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988953

RESUMO

We report a subnanosecond mid-IR tunable optical parametric oscillator based on periodically poled stoichiometric lithium tantalate (PPSLT), pumped by an amplified single frequency microchip laser at 1064 nm at a repetition rate of 0.5 kHz. Using a 20 mm long PPSLT crystal polled with three different domain periods (30.2, 30.3, and 30.4 µm) and changing the temperature of the crystal from 20°C to 265°C, we achieved wavelength tuning between 2990 and 3500 nm. The high nonlinearity of the used medium and the large aperture (3.2 mm) ensure maximum idler output energy of ~2 mJ in the whole tuning range, corresponding to 18% idler conversion efficiency and more than 1 W of average power. 270 ps idler pulse durations were obtained as a result of the 818 ps pulse duration of the pump.


Assuntos
Raios Infravermelhos , Lítio , Fenômenos Ópticos , Óxidos , Tantálio , Absorção , Lasers , Fatores de Tempo
16.
Mol Biosyst ; 8(10): 2633-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22854826

RESUMO

Many anticancer drugs cannot recognize selectively tumor tissues, and cause destruction to normal ones. Although it is very toxic, cisplatin is still one of the most applied chemotherapeutics used for treatment of sarcomas, carcinomas, etc. It causes severe side effects as a result of the lack of selectivity of the drug to tumor tissue and acquired or intrinsic resistance occurs. Wheat germ agglutinin (WGA) is a lectin that specifically recognizes transformed cells: prostate cancer cells, pancreatic cells etc., and is uptaken into the tumor cells for which it appears to be a suitable target for anticancer agents. A fluorescence spectroscopy method was used to study the interaction of WGA with four metal-based anticancer drugs: cisplatin, Pt porphyrin and two gold porphyrins. The affinity constant (k(D)) for binding of cisplatin with WGA was k(D) = 6.67 ± 2.5 µM. The hyperbolic curve indicated the presence of a single cisplatin binding site. The affinity of Au and Pt porphyrin to WGA (k(D) = 0.08-0.49 µM) is almost two orders of magnitude higher than that for cisplatin. We found that Pt porphyrin could displace fluorescent dye ANS showing an increase in the fluorescence intensity with a concomitant blue shift of the emission maximum suggesting that the compounds accommodate the same binding site. Current research characterizes the metalloanticancer binding capacity of WGA. Our results indicate that four metal-based anticancer agents have high affinity for WGA. Since WGA recognizes transformed cells, the obtained data show that this protein might have putative usage as a drug delivery molecule in cancer.


Assuntos
Antineoplásicos Fitogênicos/química , Cisplatino/química , Portadores de Fármacos/química , Metaloporfirinas/química , Aglutininas do Germe de Trigo/química , Naftalenossulfonato de Anilina , Sítios de Ligação , Corantes Fluorescentes , Ouro/química , Humanos , Cinética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Platina/química , Ligação Proteica , Soluções , Espectrometria de Fluorescência
17.
Opt Express ; 19(22): 21754-9, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109026

RESUMO

Self-starting, steady-state χ((2))-lens mode-locking of a 1.34-µm diode-pumped Nd:YVO(4) laser using intracavity second harmonic generation in PPMgSLT is demonstrated. Pulses as short as 3.6 ps with an average output power of ~1 W are obtained at a repetition rate of 120 MHz.

18.
Rev Sci Instrum ; 81(4): 043104, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20441322

RESUMO

A broadband, femtosecond transient circular dichroism (TRCD) spectrometer has been developed and tested in the wavelength range from 350 to 700 nm. The spectrometer uses a femtosecond probe white light with well-defined circular polarization. The latter is modulated by the polarization of a narrowband seed pulse. We have implemented a dual-beam probe geometry with phase-locked detection technique to increase the signal-to-noise ratio and to reduce optical artifacts. The spectrometer allows the acquisition of TRCD spectra with subpicosecond time resolution and typical noise levels of 10(-4) absorbance units. The performance of this instrument has been demonstrated on bis(merocyanine) nanorod aggregates in tetrahydrofurane/methylcyclohexane solution. The case study confirmed that this spectrometer is effective for the investigation of chiral properties in various molecular and nanostructural systems that have transient spectra in the UV-visible spectral range.


Assuntos
Dicroísmo Circular/instrumentação , Luz , Análise Espectral/instrumentação , Absorção , Artefatos , Benzopiranos/química , Cicloexanos/química , Desenho de Equipamento , Furanos/química , Indóis/química , Nanotubos/química , Óptica e Fotônica/instrumentação , Soluções/química , Fatores de Tempo
19.
Opt Express ; 18(6): 5754-62, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389592

RESUMO

Experimental results on passive mode-locking of a Nd:YVO(4) laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded chi((2)) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded chi((2)) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.


Assuntos
Amplificadores Eletrônicos , Lasers de Estado Sólido , Lentes , Desenho de Equipamento , Análise de Falha de Equipamento
20.
Opt Lett ; 35(7): 1016-8, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20364202

RESUMO

Periodically poled stoichiometric lithium-tantalate is used for mode locking of a diode-pumped Nd:GdVO(4) laser by intracavity second-harmonic generation. Stable and self-starting operation is observed achieving average output powers of up to 5 W at a pulse-repetition rate of 107 MHz. The obtained pulse durations range from 6.5 ps at maximum output power down to 3.2 ps at 1.4 W.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA