Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Med Phys ; 51(3): 1583-1596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306457

RESUMO

BACKGROUND: As a leading cause of death, worldwide, cardiovascular disease is of great clinical importance. Among cardiovascular diseases, coronary artery disease (CAD) is a key contributor, and it is the attributed cause of death for 10% of all deaths annually. The prevalence of CAD is commensurate with the rise in new medical imaging technologies intended to aid in its diagnosis and treatment. The necessary clinical trials required to validate and optimize these technologies require a large cohort of carefully controlled patients, considerable time to complete, and can be prohibitively expensive. A safer, faster, less expensive alternative is using virtual imaging trials (VITs), utilizing virtual patients or phantoms combined with accurate computer models of imaging devices. PURPOSE: In this work, we develop realistic, physiologically-informed models for coronary plaques for application in cardiac imaging VITs. METHODS: Histology images of plaques at micron-level resolution were used to train a deep convolutional generative adversarial network (DC-GAN) to create a library of anatomically variable plaque models with clinical anatomical realism. The stability of each plaque was evaluated by finite element analysis (FEA) in which plaque components and vessels were meshed as volumes, modeled as specialized tissues, and subjected to the range of normal coronary blood pressures. To demonstrate the utility of the plaque models, we combined them with the whole-body XCAT computational phantom to perform initial simulations comparing standard energy-integrating detector (EID) CT with photon-counting detector (PCD) CT. RESULTS: Our results show the network is capable of generating realistic, anatomically variable plaques. Our simulation results provide an initial demonstration of the utility of the generated plaque models as targets to compare different imaging devices. CONCLUSIONS: Vast, realistic, and variable CAD pathologies can be generated to incorporate into computational phantoms for VITs. There they can serve as a known truth from which to optimize and evaluate cardiac imaging technologies quantitatively.


Assuntos
Vasos Coronários , Tomografia Computadorizada por Raios X , Humanos , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Coração , Imagens de Fantasmas , Simulação por Computador
2.
Front Cardiovasc Med ; 10: 1204071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600044

RESUMO

Aims: Residual cardiovascular risk persists despite statin therapy. In REDUCE-IT, icosapent ethyl (IPE) reduced total events, but the mechanisms of benefit are not fully understood. EVAPORATE evaluated the effects of IPE on plaque characteristics by coronary computed tomography angiography (CCTA). Given the conclusion that the IPE-treated patients demonstrate that plaque burden decreases has already been published in the primary study analysis, we aimed to demonstrate whether the use of an analytic technique defined and validated in histological terms could extend the primary study in terms of whether such changes could be reliably seen in less time on drug, at the individual (rather than only at the cohort) level, or both, as neither of these were established by the primary study result. Methods and Results: EVAPORATE randomized the patients to IPE 4 g/day or placebo. Plaque morphology, including lipid-rich necrotic core (LRNC), fibrous cap thickness, and intraplaque hemorrhage (IPH), was assessed using the ElucidVivo® (Elucid Bioimaging Inc.) on CCTA. The changes in plaque morphology between the treatment groups were analyzed. A neural network to predict treatment assignment was used to infer patient representation that encodes significant morphological changes. Fifty-five patients completed the 18-month visit in EVAPORATE with interpretable images at each of the three time points. The decrease of LRNC between the patients on IPE vs. placebo at 9 months (reduction of 2 mm3 vs. an increase of 41 mm3, p = 0.008), widening at 18 months (6 mm3 vs. 58 mm3 increase, p = 0.015) were observed. While not statistically significant on a univariable basis, reductions in wall thickness and increases in cap thickness motivated multivariable modeling on an individual patient basis. The per-patient response assessment was possible using a multivariable model of lipid-rich phenotype at the 9-month follow-up, p < 0.01 (sustained at 18 months), generalizing well to a validation cohort. Conclusion: Plaques in the IPE-treated patients acquired more characteristics of stability. Reliable assessment using histologically validated analysis of individual response is possible at 9 months, with sustained stabilization at 18 months, providing a quantitative basis to elucidate drug mechanism and assess individual patient response.

4.
Eur J Radiol ; 159: 110686, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603478

RESUMO

AIMS: Despite advances in therapy, reduction in myocardial infarction or death remains elusive. Whereas computed tomography angiography (CTA) is increasingly appreciated, the analyses are often subjective or qualitative. Methods for specific tissue characterization using histopathologic correlates have recently been reported. We extend this here to demonstrate accurate discrimination between, and quantitation of, lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), and fibrotic tissues. METHODS: NCT02143102 collected 576 tissue samples with paired CTA. Cardiovascular pathologists annotated LRNC, IPH, and dense calcification (CALC) regions as a reference standard. Blinded to histology, CTA was analyzed using ElucidVivo (Elucid Bioimaging Inc., Boston, MA USA). Structure and tissue characteristics of atherosclerotic plaque from CTA, accounting for both the imaging acquisition process and the biology, accounting for differences in density distributions that result from the different cellular and molecular level milieu of the relevant tissue types. RESULTS: LRNC was tested across a true range of 0-10 mm2, with a difference of 0.15 mm2 and a slope of 0.92. IPH was tested across a true range of 0-18 mm2, with a difference from histology of 1.68 mm2 and a slope of 0.95. CALC was tested across a range of 0-14 mm2, with a difference of -0.06 mm2 and a slope of 0.99. Matrix tissue (MATX) was tested across a range of 4-52 mm2, with a difference of 0.02 mm2 and a slope of 0.91. CONCLUSION: LRNC, IPH, CALC, and MATX may be objectively quantified using histopathologic correlates automatically from CTA for use singly or in combination to optimize patient care. The availability of objectively validated quantitative markers that may be followed longitudinally may extend the clinical utility of CTA. Additionally, these measures contribute efficacy variables for developing novel drugs and clinical decision support tools for tailored therapeutics.


Assuntos
Calcinose , Estenose das Carótidas , Placa Aterosclerótica , Humanos , Angiografia por Tomografia Computadorizada , Estenose das Carótidas/patologia , Angiografia , Hemorragia , Padrões de Referência , Artérias Carótidas/patologia
5.
Comput Biol Med ; 152: 106364, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525832

RESUMO

OBJECTIVE: Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS: The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION: In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Proteômica , Medicina de Precisão , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Calibragem , Projetos Piloto , Aterosclerose/tratamento farmacológico , Simulação por Computador
6.
Acad Radiol ; 30(2): 159-182, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464548

RESUMO

Multiparametric quantitative imaging biomarkers (QIBs) offer distinct advantages over single, univariate descriptors because they provide a more complete measure of complex, multidimensional biological systems. In disease, where structural and functional disturbances occur across a multitude of subsystems, multivariate QIBs are needed to measure the extent of system malfunction. This paper, the first Use Case in a series of articles on multiparameter imaging biomarkers, considers multiple QIBs as a multidimensional vector to represent all relevant disease constructs more completely. The approach proposed offers several advantages over QIBs as multiple endpoints and avoids combining them into a single composite that obscures the medical meaning of the individual measurements. We focus on establishing statistically rigorous methods to create a single, simultaneous measure from multiple QIBs that preserves the sensitivity of each univariate QIB while incorporating the correlation among QIBs. Details are provided for metrological methods to quantify the technical performance. Methods to reduce the set of QIBs, test the superiority of the mp-QIB model to any univariate QIB model, and design study strategies for generating precision and validity claims are also provided. QIBs of Alzheimer's Disease from the ADNI merge data set are used as a case study to illustrate the methods described.


Assuntos
Doença de Alzheimer , Diagnóstico por Imagem , Humanos , Diagnóstico por Imagem/métodos , Biomarcadores , Doença de Alzheimer/diagnóstico por imagem
7.
Atherosclerosis ; 366: 42-48, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481054

RESUMO

BACKGROUND AND AIMS: The application of machine learning to assess plaque risk phenotypes on cardiovascular CT angiography (CTA) is an area of active investigation. Studies using accepted histologic definitions of plaque risk as ground truth for machine learning models are uncommon. The aim was to evaluate the accuracy of a machine-learning software for determining plaque risk phenotype as compared to expert pathologists (histologic ground truth). METHODS: Sections of atherosclerotic plaques paired with CTA were prospectively collected from patients undergoing carotid endarterectomy at two centers. Specimens were annotated for lipid-rich necrotic core, calcification, matrix, and intraplaque hemorrhage at 2 mm spacing and classified as minimal disease, stable plaque, or unstable plaque according to a modified American Heart Association histological definition. Phenotype is determined in two steps: plaque morphology is delineated according to histological tissue definitions, followed by a machine learning classifier. The performance in derivation and validation cohorts for plaque risk categorization and stenosis was compared to histologic ground truth at each matched cross-section. RESULTS: A total of 496 and 408 vessel cross-sections in the derivation and validation cohorts (from 30 and 23 patients, respectively). The software demonstrated excellent agreement in the validation cohort with histological ground truth plaque risk phenotypes with weighted kappa of 0.82 [0.78-0.86] and area under the receiver operating curve for correct identification of plaque type was 0.97 [0.96, 0.98], 0.95 [0.94, 0.97], 0.99 [0.99, 1.0] for unstable plaque, stable plaque, and minimal disease, respectively. Diameter stenosis correlated poorly to histologically defined plaque type; weighted kappa 0.25 in the validation cohort. CONCLUSIONS: A machine-learning software trained on histological ground-truth tissue inputs demonstrated high accuracy for identifying plaque stability phenotypes as compared to expert pathologists.


Assuntos
Aterosclerose , Estenose das Carótidas , Placa Aterosclerótica , Humanos , Angiografia por Tomografia Computadorizada , Artérias Carótidas/patologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Estenose das Carótidas/patologia , Constrição Patológica , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Placa Aterosclerótica/patologia
8.
Acad Radiol ; 30(2): 215-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36411153

RESUMO

This paper is the fifth in a five-part series on statistical methodology for performance assessment of multi-parametric quantitative imaging biomarkers (mpQIBs) for radiomic analysis. Radiomics is the process of extracting visually imperceptible features from radiographic medical images using data-driven algorithms. We refer to the radiomic features as data-driven imaging markers (DIMs), which are quantitative measures discovered under a data-driven framework from images beyond visual recognition but evident as patterns of disease processes irrespective of whether or not ground truth exists for the true value of the DIM. This paper aims to set guidelines on how to build machine learning models using DIMs in radiomics and to apply and report them appropriately. We provide a list of recommendations, named RANDAM (an abbreviation of "Radiomic ANalysis and DAta Modeling"), for analysis, modeling, and reporting in a radiomic study to make machine learning analyses in radiomics more reproducible. RANDAM contains five main components to use in reporting radiomics studies: design, data preparation, data analysis and modeling, reporting, and material availability. Real case studies in lung cancer research are presented along with simulation studies to compare different feature selection methods and several validation strategies.


Assuntos
Neoplasias Pulmonares , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Curva ROC , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Diagnóstico por Imagem , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão
9.
Acad Radiol ; 30(2): 196-214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273996

RESUMO

Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluation of its fitness of use differs from the analogous processes for individual QIBs in several key aspects. A computational procedure to combine the QIB values into a model output must be specified. The output must also be reproducible and be shown to have reasonably strong ability to predict the risk of an event of interest. Attention must be paid to statistical issues not often encountered in the single QIB scenario, including overfitting and bias in the estimates of model performance. This is the fourth in a five-part series on statistical methodology for assessing the technical performance of multiparametric quantitative imaging. Considerations for data acquisition are discussed and recommendations from the literature on methodology to construct and evaluate QIB-based models for risk prediction are summarized. The findings in the literature upon which these recommendations are based are demonstrated through simulation studies. The concepts in this manuscript are applied to a real-life example involving prediction of major adverse cardiac events using automated plaque analysis.


Assuntos
Diagnóstico por Imagem , Humanos , Diagnóstico por Imagem/métodos , Biomarcadores , Simulação por Computador
10.
Acad Radiol ; 30(2): 183-195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36202670

RESUMO

This manuscript is the third in a five-part series related to statistical assessment methodology for technical performance of multi-parametric quantitative imaging biomarkers (mp-QIBs). We outline approaches and statistical methodologies for developing and evaluating a phenotype classification model from a set of multiparametric QIBs. We then describe validation studies of the classifier for precision, diagnostic accuracy, and interchangeability with a comparator classifier. We follow with an end-to-end real-world example of development and validation of a classifier for atherosclerotic plaque phenotypes. We consider diagnostic accuracy and interchangeability to be clinically meaningful claims for a phenotype classification model informed by mp-QIB inputs, aiming to provide tools to demonstrate agreement between imaging-derived characteristics and clinically established phenotypes. Understanding that we are working in an evolving field, we close our manuscript with an acknowledgement of existing challenges and a discussion of where additional work is needed. In particular, we discuss the challenges involved with technical performance and analytical validation of mp-QIBs. We intend for this manuscript to further advance the robust and promising science of multiparametric biomarker development.


Assuntos
Diagnóstico por Imagem , Diagnóstico por Imagem/métodos , Biomarcadores , Fenótipo
11.
J Mech Behav Biomed Mater ; 134: 105403, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049368

RESUMO

BACKGROUND: Rupture of unstable atherosclerotic plaques with a large lipid-rich necrotic core and a thin fibrous cap cause myocardial infarction and stroke. Yet it has not been possible to assess this for individual patients. Clinical guidelines still rely on use of luminal narrowing, a poor indicator but one that persists for lack of effective means to do better. We present a case study demonstrating the assessment of biomechanical indices pertaining to plaque rupture risk non-invasively for individual patients enabled by histologically validated tissue characterization. METHODS: Routinely acquired clinical images of plaques were analyzed to characterize vascular wall tissues using software validated by histology (ElucidVivo, Elucid Bioimaging Inc.). Based on the tissue distribution, wall stress and strain were then calculated at spatial locations with varied fibrous cap thicknesses at diastolic, mean and systolic blood pressures. RESULTS: The von Mises stress of 152 [131, 172] kPa and the equivalent strain of 0.10 [0.08, 0.12] were calculated where the fibrous cap thickness was smallest (560 µm) (95% CI in brackets). The stress at this location was at a level predictive of plaque failure. Stress and strain at locations with larger cap thicknesses were calculated to be lower, demonstrating a clinically relevant range of risk levels. CONCLUSION: Patient specific tissue characterization can identify distributions of stress and strain in a clinically relevant range. This capability may be used to identify high-risk lesions and personalize treatment decisions for individual patients with cardiovascular disease and improve prevention of myocardial infarction and stroke.


Assuntos
Infarto do Miocárdio , Placa Aterosclerótica , Acidente Vascular Cerebral , Angiografia por Tomografia Computadorizada , Fibrose , Humanos , Infarto do Miocárdio/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Acidente Vascular Cerebral/diagnóstico por imagem
12.
J Invest Dermatol ; 142(11): 2909-2919, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35750149

RESUMO

Psoriasis is a systemic inflammatory disease with an increased risk of atherosclerotic events and premature cardiovascular disease. S100A7, A8/A9, and A12 are protein complexes that are produced by activated neutrophils, monocytes, and keratinocytes in psoriasis. Lipid-rich necrotic core (LRNC) is a high-risk coronary plaque feature previously found to be associated with cardiovascular risk factors and psoriasis severity. LRNC can decrease with biologic therapy, but how this occurs remains unknown. We investigated the relationship between S100 proteins, LRNC, and biologic therapy in psoriasis. S100A8/A9 associated with LRNC in fully adjusted models (ß = 0.27, P = 0.009; n = 125 patients with psoriasis with available coronary computed tomography angiography scans; LRNC analyses; and serum S100A7, S100A8, S100A9, S100A12, and S100A8/A9 levels). At 1 year, in patients receiving biologic therapy (36 of 73 patients had 1-year coronary computed tomography angiography scans available), a 79% reduction in S100A8/A9 levels (‒172 [‒291.7 to 26.4] vs. ‒29.9 [‒137.9 to 50.5]; P = 0.04) and a 0.6 mm2 reduction in average LRNC area (0.04 [‒0.48 to 0.77] vs. ‒0.56 [‒1.8 to 0.13]; P = 0.02) were noted. These results highlight the potential role of S100A8/A9 in the development of high-risk coronary plaque in psoriasis.


Assuntos
Psoríase , Proteína S100A12 , Humanos , Biomarcadores , Calgranulina A , Calgranulina B , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Proteínas S100 , Estudos de Coortes , Terapia Biológica , Necrose , Lipídeos
13.
Acad Radiol ; 29(4): 543-549, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34272163

RESUMO

RATIONALE AND OBJECTIVES: A critical performance metric for any quantitative imaging biomarker is its ability to reliably generate similar values on repeat testing. This is known as the repeatability of the biomarker, and it is used to determine the minimum detectable change needed in order to show that a change over time is real change and not just due to measurement error. Test-retest studies are the classic approach for estimating repeatability; however, these studies can be infeasible when the imaging is expensive, time-consuming, invasive, or requires contrast agents. The objective of this study was to develop and test a method for estimating repeatability without a test-retest study. MATERIALS AND METHODS: We present a statistical method for estimating repeatability and testing whether an imaging method meets a specified criterion for repeatability in the absence of a test-retest study. The new method is applicable for the particular situation where a reference standard is available. A Monte Carlo simulation study was conducted to evaluate the performance of the new method. RESULTS: The proposed estimator is unbiased, and hypothesis tests with the new estimator have nominal type I error rate and power similar to a test-retest study. We considered the situation where the reference standard provides the true value, as well as when the reference standard itself has various magnitudes of measurement error. An example from CT imaging biomarkers of atherosclerosis illustrates the new method. CONCLUSION: Precision of a QIB can be measured without a test-retest study in the situation where a reference standard is available.


Assuntos
Meios de Contraste , Diagnóstico por Imagem , Biomarcadores , Humanos , Método de Monte Carlo , Reprodutibilidade dos Testes
14.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063989

RESUMO

Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.


Assuntos
Calcinose , Miócitos de Músculo Liso , Proteoglicanas/metabolismo , Remodelação Vascular , Animais , Diferenciação Celular , Estudos de Coortes , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Fatores de Transcrição SOX9/metabolismo , Proteína Smad3/metabolismo
16.
Int J Cardiol ; 331: 307-315, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529657

RESUMO

BACKGROUND: To evaluate the feasibility of non-invasive fractional flow reserve (FFR) estimation using histologically-validated assessment of plaque morphology on coronary CTA (CCTA) as inputs to a predictive model further validated against invasive FFR. METHODS: Patients (n = 113, 59 ± 8.9 years, 77% male) with suspected coronary artery disease (CAD) who had undergone CCTA and invasive FFR between August 2013 and May 2018 were included. Commercially available software was used to extract quantitative plaque morphology inclusive of both vessel structure and composition. The extracted plaque morphology was then fed as inputs to an optimized artificial neural network to predict lesion-specific ischemia/hemodynamically significant CAD with performance validated by invasive FFR. RESULTS: A total of 122 lesions were considered, 59 (48%) had low FFR values. Plaque morphology-based FFR assessment achieved an area under the curve, sensitivity and specificity of 0.94, 0.90 and 0.81, respectively, versus 0.71, 0.71, and 0.50, respectively, for an optimized threshold applied to degree of stenosis. The optimized ridge regression model for continuous value estimation of FFR achieved a cross-correlation coefficient of 0.56 and regression slope of 0.59 using cross validation, versus 0.18 and 0.10 for an optimized threshold applied to degree of stenosis. CONCLUSIONS: Our results show that non-invasive plaque morphology-based FFR assessment may be used to predict lesion-specific ischemia resulting in hemodynamically significant CAD. This substantially outperforms degree of stenosis interpretation and has a comparable level of sensitivity and specificity relative to publicly reported results from computational fluid dynamics-based approaches.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Feminino , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença
17.
J Am Coll Cardiol ; 76(10): 1226-1243, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32883417

RESUMO

Evaluation of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) has seen a paradigm shift in the last decade. Evidence increasingly supports the clinical utility of CCTA across various stages of CAD, from the detection of early subclinical disease to the assessment of acute chest pain. Additionally, CCTA can be used to noninvasively quantify plaque burden and identify high-risk plaque, aiding in diagnosis, prognosis, and treatment. This is especially important in the evaluation of CAD in immune-driven conditions with increased cardiovascular disease prevalence. Emerging applications of CCTA based on hemodynamic indices and plaque characterization may provide personalized risk assessment, affect disease detection, and further guide therapy. This review provides an update on the evidence, clinical applications, and emerging technologies surrounding CCTA as highlighted at the 2019 National Heart, Lung and Blood Institute CCTA Summit.


Assuntos
Tecnologia Biomédica/tendências , Angiografia por Tomografia Computadorizada/tendências , Angiografia Coronária/tendências , Doença da Artéria Coronariana/diagnóstico por imagem , Dor no Peito/diagnóstico por imagem , Dor no Peito/etiologia , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/complicações , Humanos , Literatura de Revisão como Assunto , Medição de Risco/métodos , Medição de Risco/tendências , Calcificação Vascular/complicações , Calcificação Vascular/diagnóstico por imagem
18.
Eur J Radiol ; 116: 76-83, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31153577

RESUMO

OBJECTIVE: The purpose of this study is to assess the value of an automated model-based plaque characterization tool for the prediction of major adverse cardiac events (MACE). METHODS: We retrospectively included 45 patients with suspected coronary artery disease of which 16 (33%) experienced MACE within 12 months. Commercially available plaque quantification software was used to automatically extract quantitative plaque morphology: lumen area, wall area, stenosis percentage, wall thickness, plaque burden, remodeling ratio, calcified area, lipid rich necrotic core (LRNC) area and matrix area. The measurements were performed at all cross sections, spaced at 0.5 mm, based on fully 3D segmentations of lumen, wall, and each tissue type. Discriminatory power of these markers and traditional risk factors for predicting MACE were assessed. RESULTS: Regression analysis using clinical risk factors only resulted in a prognostic accuracy of 63% with a corresponding area under the curve (AUC) of 0.587. Based on our plaque morphology analysis, minimal cap thickness, lesion length, LRNC volume, maximal wall area/thickness, the remodeling ratio, and the calcium volume were included into our prognostic model as parameters. The use of morphologic features alone resulted in an increased accuracy of 77% with an AUC of 0.94. Combining both clinical risk factors and morphological features in a multivariate logistic regression analysis increased the accuracy to 87% with a similar AUC of 0.924. CONCLUSION: An automated model based algorithm to evaluate CCTA-derived plaque features and quantify morphological features of atherosclerotic plaque increases the ability for MACE prognostication significantly compared to the use of clinical risk factors alone.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Algoritmos , Área Sob a Curva , Doença da Artéria Coronariana/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
20.
Radiology ; 286(2): 622-631, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28858564

RESUMO

Purpose To (a) evaluate whether plaque tissue characteristics determined with conventional computed tomographic (CT) angiography could be quantitated at higher levels of accuracy by using image processing algorithms that take characteristics of the image formation process coupled with biologic insights on tissue distributions into account by comparing in vivo results and ex vivo histologic findings and (b) assess reader variability. Materials and Methods Thirty-one consecutive patients aged 43-85 years (average age, 64 years) known to have or suspected of having atherosclerosis who underwent CT angiography and were referred for endarterectomy were enrolled. Surgical specimens were evaluated with histopathologic examination to serve as standard of reference. Two readers used lumen boundary to determine scanner blur and then optimized component densities and subvoxel boundaries to best fit the observed image by using semiautomatic software. The accuracy of the resulting in vivo quantitation of calcification, lipid-rich necrotic core (LRNC), and matrix was assessed with statistical estimates of bias and linearity relative to ex vivo histologic findings. Reader variability was assessed with statistical estimates of repeatability and reproducibility. Results A total of 239 cross sections obtained with CT angiography and histologic examination were matched. Performance on held-out data showed low levels of bias and high Pearson correlation coefficients for calcification (-0.096 mm2 and 0.973, respectively), LRNC (1.26 mm2 and 0.856), and matrix (-2.44 mm2 and 0.885). Intrareader variability was low (repeatability coefficient ranged from 1.50 mm2 to 1.83 mm2 among tissue characteristics), as was interreader variability (reproducibility coefficient ranged from 2.09 mm2 to 4.43 mm2). Conclusion There was high correlation and low bias between the in vivo software image analysis and ex vivo histopathologic quantitative measures of atherosclerotic plaque tissue characteristics, as well as low reader variability. Software algorithms can mitigate the blurring and partial volume effects of routine CT angiography acquisitions to produce accurate quantification to enhance current clinical practice. Clinical trial registration no. NCT02143102 © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on September 15, 2017.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Angiografia por Tomografia Computadorizada/métodos , Diagnóstico por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Software , Calcificação Vascular/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA