RESUMO
A highly adaptable and robust terahertz (THz) energy meter is designed and implemented to detect energetic THz pulses from high-intensity (>1018 W/cm2) laser-plasma interactions on the OMEGA EP. THz radiation from the laser driven target is detected by a shielded pyrometer. A second identical pyrometer is used for background subtraction. The detector can be configured to detect THz pulses in the 1 mm to 30 µm (0.3- to 10-THz) range and pulse energies from joules to microjoules via changes in filtration, aperture size, and position. Additional polarization selective filtration can also be used to determine the THz pulse polarization. The design incorporates significant radiation and electromagnetic pulse shielding to survive and operate within the OMEGA EP radiation environment. We describe the design, operational principle, calibration, and testing of the THz energy meter. The pyrometers were calibrated using a benchtop laser and show linear sensitivity to up to 1000 nJ of absorbed energy. The initial results from four OMEGA EP THz experiments detected up to â¼15µJ at the detector, which can correspond to hundreds of mJ depending on THz emission and reflection models.
RESUMO
The National Ignition Facility (NIF) successfully completed its first inertial confinement fusion (ICF) campaign in 2009. A neutron time-of-flight (nTOF) system was part of the nuclear diagnostics used in this campaign. The nTOF technique has been used for decades on ICF facilities to infer the ion temperature of hot deuterium (D(2)) and deuterium-tritium (DT) plasmas based on the temporal Doppler broadening of the primary neutron peak. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the yield with high accuracy. The NIF nTOF system is designed to measure neutron yield and ion temperature over 11 orders of magnitude (from 10(8) to 10(19)), neutron bang time in DT implosions between 10(12) and 10(16), and to infer areal density for DT yields above 10(12). During the 2009 campaign, the three most sensitive neutron time-of-flight detectors were installed and used to measure the primary neutron yield and ion temperature from 25 high-convergence implosions using D(2) fuel. The OMEGA yield calibration of these detectors was successfully transferred to the NIF.