Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 5: 1076752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875887

RESUMO

Tobacco harm reduction (THR) involves providing adult smokers with potentially reduced harm modes of nicotine delivery as alternatives to smoking combustible cigarettes. Heated tobacco products (HTPs) form a category with THR potential due to their ability to deliver nicotine and flavours through heating, not burning, tobacco. By eliminating burning, heated tobacco does not produce smoke but an aerosol which contains fewer and lower levels of harmful chemicals compared to cigarette smoke. In this study we assessed the in vitro toxicological profiles of two prototype HTPs' aerosols compared to the 1R6F reference cigarette using the 3D human (bronchial) MucilAir™ model. To increase consumer relevance, whole aerosol/smoke exposures were delivered repeatedly across a 28 day period (16, 32, or 48 puffs per exposure). Cytotoxicity (LDH secretion), histology (Alcian Blue/H&E; Muc5AC; FoxJ1 staining), cilia active area and beat frequency and inflammatory marker (IL-6; IL-8; MMP-1; MMP-3; MMP-9; TNFα) levels were assessed. Diluted 1R6F smoke consistently induced greater and earlier effects compared to the prototype HTP aerosols across the endpoints, and in a puff dependent manner. Although some significant changes across the endpoints were induced by exposure to the HTPs, these were substantially less pronounced and less frequently observed, with apparent adaptive responses occurring over the experimental period. Furthermore, these differences between the two product categories were observed at a greater dilution (and generally lower nicotine delivery range) for 1R6F (1R6F smoke diluted 1/14, HTP aerosols diluted 1/2, with air). Overall, the findings demonstrate the THR potential of the prototype HTPs through demonstrated substantial reductions in toxicological outcomes in in vitro 3D human lung models.

2.
Toxicol In Vitro ; 86: 105510, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36372310

RESUMO

This study aimed to compare the aerosol chemistry and in vitro toxicological profiles of two prototype Heated Tobacco Product (p-HTP) variants to the 1R6F Reference Cigarette. In the neutral red uptake screen the p-HTPs were 37-39-fold less potent than 1R6F, in the micronucleus assay, responses to the p-HTPs were 8-22-fold less, and in the Ames test mutagenicity was weak or removed compared to 1R6F. The cardiovascular scratch wound assay revealed 58-fold greater wound healing impairment following exposure to 1R6F smoke extracts than the p-HTPs. Furthermore, in seven cell stress-related high content screening endpoints (cell count, cytochrome c release, mitochondrial membrane potential, GSH depletion, NFkB translocation, phosphorylation of c-jun and phosphorylation of H2AX), at 4 and 24 h, responses were substantially greater to 1R6F smoke extracts at comparable nicotine levels. The reduced in vitro effects of the p-HTPs were attributed to substantial reductions (90-97%) in selected HPHCs measured compared to in 1R6F smoke. The multiple endpoint in vitro assessment approach provides greater mechanistic insight and the first reported toxicological characterisation of these p-HTPs in the literature. Overall, the findings contribute to the growing weight of evidence that HTPs may offer a reduced harm mode of nicotine delivery to adult smokers.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Nicotina/toxicidade , Fumaça/efeitos adversos , Nicotiana
3.
Altern Lab Anim ; 50(4): 293-309, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35938181

RESUMO

The use of reconstituted human airway (RHuA) epithelial tissues to assess functional endpoints is highly relevant in respiratory toxicology, but standardised methods are lacking. In June 2015, the Institute for In Vitro Sciences (IIVS) held a technical workshop to evaluate the potential for standardisation of methods, including ciliary beat frequency (CBF). The applicability of a protocol suggested in the workshop was assessed in a multi-laboratory ring study. This report summarises the findings, and uses the similarities and differences identified between the laboratories to make recommendations for researchers in the absence of a validated method. Two software platforms for the assessment of CBF were used - Sisson-Ammons Video Analysis (SAVA; Ammons Engineering, Clio, MI, USA) and ciliaFA (National Institutes of Health, Bethesda, MD, USA). Both were utilised for multiple read temperatures, one objective strength (10×) and up to four video captures per tissue, to assess their utility. Two commercial RHuA tissue cultures were used: MucilAir™ (Epithelix, Geneva, Switzerland) and EpiAirway™ (MatTek, Ashland, MA, USA). IL-13 and procaterol were used to induce CBF-specific responses as positive controls. Further testing addressed the impact of tissue acclimation duration, the number of capture fields and objective strengths on baseline CBF readings. Both SAVA and ciliaFA reliably collected CBF data. However, ciliaFA failed to generate accurate CBF measurements above ∼10 Hz. The positive controls were effective, but were subject to inter-laboratory variability. CBF endpoints were generally uniform across replicate tissues, objective strengths and laboratories. Longer tissue acclimation increased the percentage active area, but had minimal impact on CBF. Taken together, these findings support the development and validation of a standardised CBF measurement protocol.


Assuntos
Cílios , Depuração Mucociliar , Epitélio , Humanos , Laboratórios , Software , Estados Unidos
4.
Curr Res Toxicol ; 2: 99-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345855

RESUMO

Smoking is a cause of serious diseases in smokers including chronic respiratory diseases. This study aimed to evaluate the tobacco harm reduction (THR) potential of an electronic vapor product (EVP, myblu™) compared to a Kentucky Reference Cigarette (3R4F), and assessed endpoints related to chronic respiratory diseases. Endpoints included: cytotoxicity, barrier integrity (TEER), cilia function, immunohistochemistry, and pro-inflammatory markers. In order to more closely represent the user exposure scenario, we have employed the in vitro 3D organotypic model of human airway epithelium (MucilAir™, Epithelix) for respiratory assessment. The model was repeatedly exposed to either whole aerosol of the EVP, or whole 3R4F smoke, at the air liquid interface (ALI), for 4 weeks to either 30, 60 or 90 puffs on 3-exposure-per-week basis. 3R4F smoke generation used the ISO 20778:2018 regime and EVP aerosol used the ISO 20768:2018 vaping regime. Exposure to undiluted whole EVP aerosol did not trigger any significant changes in the level of pro-inflammatory mediators, cilia beating function, barrier integrity and cytotoxicity when compared with air controls. In contrast, exposure to diluted (1:17) whole cigarette smoke caused significant changes to all the endpoints mentioned above. To our knowledge, this is the first study evaluating the effects of repeated whole cigarette smoke and whole EVP aerosol exposure to a 3D lung model at the ALI. Our results add to the growing body of scientific literature supporting the THR potential of EVPs relative to combustible cigarettes and the applicability of the 3D lung models in human-relevant product risk assessments.

5.
J Appl Toxicol ; 34(5): 506-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23765558

RESUMO

In toxicology, the strategies for testing the hazardous potential of substances are changing as a result of the ongoing progress in the development of in vitro methods and the demand of the authorities to reduce animal testing. Even in the complex field of inhalation toxicology with its high requirements on the technical implementation and cell culture models, the preconditions for using such methods are fulfilled. We here introduce a sophisticated technique that enables the stable and reproducible exposure of cultivated cells to airborne substances at the air-liquid interface by means of the CULTEX(®) Radial Flow System (RFS) module. The feasibility and suitability of the experimental setup is demonstrated by dose-response investigations of mainstream cigarette smoke and particulate matter of four substances in different lung epithelial cell lines. A dose-dependent cytotoxcity of the test substances was verified by applying different exposure times. The high reproducibility of the results indicate the reliability of the presented method and recommend the integration of such in vitro approaches in the field of inhalation toxicology by advancing their regulatory validation.


Assuntos
Poluentes Atmosféricos/toxicidade , Alternativas aos Testes com Animais/métodos , Técnicas de Cultura de Células/métodos , Exposição por Inalação , Testes de Toxicidade/métodos , Poluentes Atmosféricos/química , Alternativas aos Testes com Animais/instrumentação , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Modelos Biológicos , Material Particulado/química , Material Particulado/toxicidade , Transição de Fase , Reprodutibilidade dos Testes , Poluição por Fumaça de Tabaco/efeitos adversos , Testes de Toxicidade/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA