Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0004724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651898

RESUMO

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE: Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.


Assuntos
Norovirus , Tropismo Viral , Internalização do Vírus , Animais , Humanos , Camundongos , Infecções por Caliciviridae/virologia , Genoma Viral , Células HeLa , Especificidade de Hospedeiro , Mutação , Norovirus/genética , Norovirus/fisiologia , Receptores Virais/metabolismo , Receptores Virais/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Ligação Viral , Replicação Viral
2.
J Lipid Res ; 65(3): 100512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295986

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lisina/metabolismo , Sítios de Ligação , Lipídeos , Ligação Proteica
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260699

RESUMO

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.

4.
mSphere ; 7(3): e0004622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35531660

RESUMO

Enteric viruses encounter various bacteria in the host, which can impact infection outcomes. The interactions between noroviruses and enteric bacteria are not well understood. Previous work determined that murine norovirus (MNV), a model norovirus, had decreased replication in antibiotic-treated mice compared with conventional mice. Although this suggests that the microbiota promotes MNV infection, the mechanisms are not completely understood. Additionally, prior work with other enteric viruses, such as poliovirus and coxsackievirus B3, demonstrated that virions bind bacteria, and exposure to bacteria stabilizes viral particles and limits premature RNA release. Therefore, we examined interactions between MNV and specific bacteria and the consequences of these interactions. We found that the majority of Gram-positive bacteria tested stabilized MNV, while Gram-negative bacteria did not stabilize MNV. Both Gram-positive and Gram-negative bacteria bound to MNV. However, bacterial binding alone was not sufficient for virion stabilization, since Gram-negative bacteria bound MNV but did not stabilize virions. Additionally, we found that bacteria conditioned medium also stabilized MNV and this stabilization may be due to a small heat-stable molecule. Overall, this work identifies specific bacteria and bacterial components that stabilize MNV and may impact virion stability in the environment. IMPORTANCE Enteric viruses are exposed to a wide variety of bacteria in the intestine, but the effects of bacteria on viral particles are incompletely understood. We found that murine norovirus (MNV) virion stability is enhanced in the presence of several Gram-positive bacterial strains. Virion-stabilizing activity was also present in bacterial culture medium, and activity was retained upon heat or protease treatment. These results suggest that certain bacteria and bacterial products may promote MNV stability in the environment, which could influence viral transmission.


Assuntos
Infecções por Enterovirus , Enterovirus , Norovirus , Animais , Antibacterianos , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Camundongos
5.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372582

RESUMO

Ebolavirus (EBOV) is a negative-sense RNA virus that causes severe hemorrhagic fever in humans. The matrix protein VP40 facilitates viral budding by binding to lipids in the host cell plasma membrane and driving the formation of filamentous, pleomorphic virus particles. The C-terminal domain of VP40 contains two highly-conserved cysteine residues at positions 311 and 314, but their role in the viral life cycle is unknown. We therefore investigated the properties of VP40 mutants in which the conserved cysteine residues were replaced with alanine. The C311A mutation significantly increased the affinity of VP40 for membranes containing phosphatidylserine (PS), resulting in the assembly of longer virus-like particles (VLPs) compared to wild-type VP40. The C314A mutation also increased the affinity of VP40 for membranes containing PS, albeit to a lesser degree than C311A. The double mutant behaved in a similar manner to the individual mutants. Computer modeling revealed that both cysteine residues restrain a loop segment containing lysine residues that interact with the plasma membrane, but Cys311 has the dominant role. Accordingly, the C311A mutation increases the flexibility of this membrane-binding loop, changes the profile of hydrogen bonding within VP40 and therefore binds to PS with greater affinity. This is the first evidence that mutations in VP40 can increase its affinity for biological membranes and modify the length of Ebola VLPs. The Cys311 and Cys314 residues therefore play an important role in dynamic interactions at the plasma membrane by modulating the ability of VP40 to bind PS.


Assuntos
Ebolavirus/genética , Proteínas da Matriz Viral/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cisteína/genética , Ebolavirus/metabolismo , Humanos , Lipídeos/fisiologia , Simulação de Dinâmica Molecular , Fosfatidilserinas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Multimerização Proteica , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/ultraestrutura , Vírion/metabolismo , Montagem de Vírus/genética , Liberação de Vírus/genética
6.
Pathogens ; 9(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455873

RESUMO

The Ebola virus (EBOV) harbors seven genes, one of which is the matrix protein eVP40, a peripheral protein that is sufficient to induce the formation of virus-like particles from the host cell plasma membrane. eVP40 can form different structures to fulfil different functions during the viral life cycle, although the structural dynamics of eVP40 that warrant dimer, hexamer, and octamer formation are still poorly understood. eVP40 has two conserved Trp residues at positions 95 and 191. The role of Trp95 has been characterized in depth as it serves as an important residue in eVP40 oligomer formation. To gain insight into the functional role of Trp191 in eVP40, we prepared mutations of Trp191 (W191A or W191F) to determine the effects of mutation on eVP40 plasma membrane localization and budding as well as eVP40 oligomerization. These in vitro and cellular experiments were complemented by molecular dynamics simulations of the wild-type (WT) eVP40 structure versus that of W191A. Taken together, Trp is shown to be a critical amino acid at position 191 as mutation to Ala reduces the ability of VP40 to localize to the plasma membrane inner leaflet and form new virus-like particles. Further, mutation of Trp191 to Ala or Phe shifted the in vitro equilibrium to the octamer form by destabilizing Trp191 interactions with nearby residues. This study has shed new light on the importance of interdomain interactions in stability of the eVP40 structure and the critical nature of timing of eVP40 oligomerization for plasma membrane localization and viral budding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA