RESUMO
We study the fluorescence of nanodiamond ensembles as a function of static external magnetic field and observe characteristic dip features close to the zero field with potential for magnetometry applications. We analyze the dependence of the feature's width and the contrast of the feature on the size of the diamond (in the range 30â nm-3000â nm) and on the strength of a bias magnetic field applied transversely to the field being scanned. We also perform optically detected magnetic resonance (ODMR) measurements to quantify the strain splitting of the zero-field ODMR resonance across various nanodiamond sizes and compare it with the width and contrast measurements of the zero-field fluorescence features for both nanodiamonds and bulk samples. The observed properties provide compelling evidence of cross-relaxation effects in the NV system occurring close to zero magnetic fields. Finally, the potential of this technique for use in practical magnetometry is discussed.
RESUMO
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, â³ J = γ 14 N / γ 15 N J 15 N H - J 14 N H ≈ - 58 mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations.
RESUMO
This paper presents a new technique to study the adsorption and desorption of ions and electrons on insulating surfaces in the presence of strong electric fields in cryoliquids. The experimental design consists of a compact cryostat coupled with a sensitive electro-optical Kerr device to monitor the stability of the electric fields. The behavior of nitrogen and helium ions on a poly(methyl methacrylate) (PMMA) surface was compared to a PMMA surface coated with a mixture of deuterated polystyrene and deuterated polybutadiene. Ion accumulation and removal on these surfaces were unambiguously observed. Within the precision of the data, both surfaces behave similarly for the physisorbed ions. The setup was also used to measure the (quasi-)static dielectric constant of PMMA at T ≈ 70 K. The impact of the ion adsorption on the search for a neutron permanent electric dipole moment in a cryogenic environment, such as the nEDM@SNS experiment, is discussed.
RESUMO
Quantum amplification enables the enhancement of weak signals and is of great importance for precision measurements, such as biomedical science and tests of fundamental symmetries. Here, we observe a previously unexplored magnetic amplification using dark noble-gas nuclear spins in the absence of pump light. Such dark spins exhibit remarkable coherence lasting up to 6 min and the resilience against the perturbations caused by overlapping alkali-metal gas. We demonstrate that the observed phenomenon, referred to as "dark spin amplification," significantly magnifies magnetic field signals by at least three orders of magnitude. As an immediate application, we showcase an ultrasensitive magnetometer capable of measuring subfemtotesla fields in a single 500-s measurement. Our approach is generic and can be applied to a wide range of noble-gas isotopes, and we discuss promising optimizations that could further improve the current signal amplification up to [Formula: see text] with [Formula: see text]Ne, [Formula: see text] with [Formula: see text]Xe, and [Formula: see text] with [Formula: see text]He. This work unlocks opportunities in precision measurements, including searches for ultralight dark matter with sensitivity well beyond the supernova-observation constraints.
RESUMO
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
RESUMO
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Hidrogenação , Ácido Pirúvico/metabolismo , FumaratosRESUMO
We show that catalyst-free aqueous solutions of hyperpolarized [1-13C]succinate can be produced using parahydrogen-induced polarization (PHIP) and a combination of homogeneous and heterogeneous catalytic hydrogenation reactions. We generate hyperpolarized [1-13C]fumarate via PHIP using para-enriched hydrogen gas with a homogeneous ruthenium catalyst, and subsequently remove the toxic catalyst and reaction side products via a purification procedure. Following this, we perform a second hydrogenation reaction using normal hydrogen gas to convert the fumarate into succinate using a solid Pd/Al2O3 catalyst. This inexpensive polarization protocol has a turnover time of a few minutes, and represents a major advance for in vivo applications of [1-13C]succinate as a hyperpolarized contrast agent.
RESUMO
The effects of scalar and pseudoscalar ultralight bosonic dark matter (UBDM) were searched for by comparing the frequency of a quartz oscillator to that of a hyperfine-structure transition in ^{87}Rb, and an electronic transition in ^{164}Dy. We constrain linear interactions between a scalar UBDM field and standard-model (SM) fields for an underlying UBDM particle mass in the range 1×10^{-17}-8.3×10^{-13} eV and quadratic interactions between a pseudoscalar UBDM field and SM fields in the range 5×10^{-18}-4.1×10^{-13} eV. Within regions of the respective ranges, our constraints on linear interactions significantly improve on results from previous, direct searches for oscillations in atomic parameters, while constraints on quadratic interactions surpass limits imposed by such direct searches as well as by astrophysical observations.
RESUMO
Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T). In this Letter, we demonstrate in situ low-field photo-CIDNP measurements using a magnetically shielded fast-field-cycling NMR setup detecting Larmor precession via atomic magnetometers. For solutions comprising mM concentrations of the photochemically polarized molecules, hyperpolarized 1H magnetization is detected by pulse-acquired NMR spectroscopy. The observed NMR line widths are about 5 times narrower than normally anticipated in high-field NMR and are systematically affected by light irradiation during the acquisition period, reflecting a reduction of the transverse relaxation time constant, T2*, on the order of 10%. Magnetometer-detected photo-CIDNP spectroscopy enables straightforward observation of spin-chemistry processes in the ambient field range from a few nT to tens of mT. Potential applications of this measuring modality are discussed.
RESUMO
We present a design to increase the amount of collected fluorescence emitted by nitrogen-vacancy color centers in diamond used for quantum-sensing. An improvement was measured in collected fluorescence when comparing oppositely faced emitting surfaces by a factor of 3.8(1). This matches ray-tracing simulation results. This design therefore improves on the shot noise limited sensitivity in optical readout-based measurements of, for instance, magnetic and electric fields, pressure, temperature, and rotations.
RESUMO
We demonstrate an alignment-based ^{87}Rb magnetometer that is immune to nonlinear Zeeman (NLZ) splitting, addressing an important problem in alkali-metal atomic magnetometry. In our scheme, there is a single magnetic resonance peak and well-separated hyperfine transition frequencies, making the magnetometer insensitive or even immune to NLZ-related heading errors. It is shown that the magnetometer can be implemented for practical measurements in geomagnetic environments, and the photon-shot-noise-limited sensitivity reaches 9 fT/sqrt[Hz] at 5 µT and remains at tens of fT/sqrt[Hz] at 50 µT at room temperature.
RESUMO
The existence of exotic spin-dependent forces may shine light on new physics beyond the standard model. We utilize two iron shielded SmCo_{5} electron-spin sources and two optically pumped magnetometers to search for exotic long-range spin-spin velocity-dependent force. The orientations of spin sources and magnetometers are optimized such that the exotic force is enhanced and common-mode noise is effectively subtracted. We set direct limit on proton-electron interaction in the force range from 1 cm to 1 km. Our experiment represents more than 10 orders of magnitude improvement than previous works.
RESUMO
Achieving high energy resolution in spin systems is important for fundamental physics research and precision measurements, with alkali-noble-gas comagnetometers being among the best available sensors. We found a new relaxation mechanism in such devices, the gradient of the Fermi-contact-interaction field that dominates the relaxation of hyperpolarized nuclear spins. We report on precise control over spin distribution, demonstrating a tenfold increase of nuclear spin hyperpolarization and transverse coherence time with optimal hybrid optical pumping. Operating in the self-compensation regime, our ^{21}Ne-Rb-K comagnetometer achieves an ultrahigh inertial rotation sensitivity of 3×10^{-8} rad/s/Hz^{1/2} in the frequency range from 0.2 to 1.0 Hz, which is equivalent to the energy resolution of 3.1×10^{-23} eV/Hz^{1/2}. We propose to use this comagnetometer to search for exotic spin-dependent interactions involving proton and neutron spins. The projected sensitivity surpasses the previous experimental and astrophysical limits by more than 4 orders of magnitude.
RESUMO
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
RESUMO
Quantum sensing provides sensitive tabletop tools to search for exotic spin-dependent interactions beyond the standard model, which have attracted great attention in theories and experiments. Here, we develop a technique based on Spin Amplifier for Particle PHysIcs REsearch (SAPPHIRE) to resonantly search for exotic interactions, specifically parity-odd spin-spin interactions. The present technique effectively amplifies exotic interaction fields by a factor of about 200 while being insensitive to spurious magnetic fields. Our studies, using such a quantum amplification technique, explore the parity-violation interactions mediated by a new vector boson in the challenging parameter space (force range between 3 mm and 1 km) and set the most stringent constraints on axial-vector electron-neutron couplings, substantially improving previous limits by five orders of magnitude. Moreover, our constraints on axial-vector couplings between nucleons reach into a hitherto unexplored parameter space. The present constraints complement the existing astrophysical and laboratory studies on potential standard model extensions.
RESUMO
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.
Assuntos
Imageamento por Ressonância Magnética , Solubilidade , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodosRESUMO
We measure electron- and nuclear-spin transition frequencies in the ground state of nitrogen-vacancy (N-V) centers in diamond for two nitrogen isotopes (14N-V and 15N-V) over temperatures ranging from 77 to 400 K. Measurements are performed using Ramsey interferometry and direct optical readout of the nuclear and electron spins. We extract coupling parameters Q (for 14N-V), D, Aâ, Aâ¥, and γe/γn, and their temperature dependences for both isotopes. The temperature dependences of the nuclear-spin transitions within the ms=0 spin manifold near room temperature are found to be 0.52(1) ppm/K for 14N-V(|mI = -1⟩ â |mI = +1⟩) and -1.1(1) ppm/K for 15N-V(|mI = -1/2⟩ â |mI = +1/2⟩). An isotopic shift in the zero-field splitting parameter D between 14N-V and 15N-V is measured to be ~ 120 kHz. Residual transverse magnetic fields are observed to shift the nuclear-spin transition frequencies, especially for 15N-V. We have precisely determined the set of parameters relevant for the development of nuclear-spin-based diamond quantum sensors with greatly reduced sensitivity to environmental factors.
RESUMO
Quantum sensing with solid-state electron spin systems finds broad applications in diverse areas ranging from material and biomedical sciences to fundamental physics. Exploiting collective behavior of noninteracting spins holds the promise of pushing the detection limit to even lower levels, while to date, those levels are scarcely reached because of the broadened linewidth and inefficient readout of solid-state spin ensembles. Here, we experimentally demonstrate that such drawbacks can be overcome by a reborn maser technology at room temperature in the solid state. Owing to maser action, we observe a fourfold reduction in the electron paramagnetic resonance linewidth of an inhomogeneously broadened molecular spin ensemble, which is narrower than the same measured from single spins at cryogenic temperatures. The maser-based readout applied to near zero-field magnetometry showcases the measurement signal-to-noise ratio of 133 for single shots. This technique would be an important addition to the toolbox for boosting the sensitivity of solid-state ensemble spin sensors.
RESUMO
Experimental searches for exotic spin-dependent forces are attracting a lot of attention because they allow to test theoretical extensions to the standard model. Here, we report an experimental search for possible exotic spin-dependent force, specifically spin-and-velocity-dependent forces, by using a K-Rb-21Ne co-magnetometer and a tungsten ring featuring a high nucleon density. Taking advantage of the high sensitivity of the co-magnetometer, the pseudomagnetic field from this exotic force is measured to be ≤7 aT. This sets limits on coupling constants for the neutron-nucleon and proton-nucleon interactions in the range of ≥0.1 m (mediator boson mass ≤2 µeV). The coupling constant limits are established to be [Formula: see text] and [Formula: see text], which are more than one order of magnitude tighter than astronomical and cosmological limits on the coupling between the new gauge boson such as Z' and standard model particles.