Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 29(8-9): 1240-1251, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35145270

RESUMO

Foamy Viruses are cell cycle-dependent retroviruses capable of persisting unintegrated in quiescent cells until cell division occurs. This unique ability allows them to target slowly dividing human tumor cells which remains an unmet need in oncolytic virotherapy. We have previously reported the generation of oncolytic Foamy Virus (oFV) vector system and demonstrated its superiority over oncolytic Murine Leukemia Virus vectors in infecting slowly dividing cancer cells. In the present study we evaluated (i) the ability of oFV to carry foreign transgenes and (ii) the genetic stability of these vectors upon serial passage. The thymidine kinase (TK) and inducible caspase 9 (iCasp9) cDNAs could be detected in the oFV backbone for up to 3 in vitro passages. In vivo, GFP-, TK- and iCasp9- carrying oFV vectors propagated efficiently in subcutaneous xenograft glioblastoma tumors and drove transgene expression for up to 66 days. However, in vivo oFV vector spread eventually resulted in complete loss of the iCasp9 cDNA, minor loss of the TK cDNA and negligible loss of the GFP. Our results suggest that oFV is a promising gene delivery platform and that transgenes smaller than 1 kb might be most suitable for oFV arming.


Assuntos
Terapia Viral Oncolítica , Spumavirus , Animais , Linhagem Celular Tumoral , DNA Complementar , Vetores Genéticos/genética , Humanos , Camundongos , Terapia Viral Oncolítica/métodos , Spumavirus/genética , Timidina Quinase/genética , Transgenes , Replicação Viral
2.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33692205

RESUMO

Nonpathogenic retroviruses of the Spumaretrovirinae subfamily can persist long-term in the cytoplasm of infected cells, completing their lifecycle only after the nuclear membrane dissolves at the time of cell division. Since the targeting of slowly dividing cancer cells remains an unmet need in oncolytic virotherapy we constructed a replication competent Foamy Virus vector (oFV) from the genomes of two chimpanzee Simian Foamy Viruses (PAN1 and PAN2) and inserted a GFP transgene in place of the bel-2 open reading frame. oFV-GFP infected and propagated with slow kinetics in multiple human tumor cell lines, inducing a syncytial cytopathic effect. Infection of growth arrested MRC5 cells was not productive, but oFV genomes persisted in the cytoplasm and the productive viral lifecycle resumed when cell division was later restored. In vivo, the virus propagated extensively in intraperitoneal ovarian cancer xenografts, slowing tumor growth, significantly prolonging survival of the treated mice and sustaining GFP transgene expression for at least 45 days. Our data indicate that oFV is a promising new replication-competent viral and gene delivery platform for efficient targeting of the most fundamental trait of cancer cells, their ability to sustain chronic proliferation.Significance:The infectivity of certain retroviruses is limited to dividing cells, which makes them attractive tools for targeting cancer cell proliferation. Previously developed replication-competent gammaretroviral vectors spread efficiently in rapidly dividing cancer cells, but not in cancer cells that divide more slowly. In contrast to rapidly proliferating transplantable mouse tumors, slow proliferation is a hallmark of human cancers and may have contributed to the clinical failure of the preclinically promising Murine Leukemia Virus vector Toca511 which failed to show efficacy in a phase 3 clinical trial in patients with glioblastoma. The studies presented in our manuscript show that oncolytic Foamy Virus (oFV) vectors are capable of persisting unintegrated in quiescent cells and resuming their life cycle once the cells start dividing again. This property of oFVs, together with their lack of pathogenicity and their ability to catalyze the fusion of infected cancer cells, makes them an attractive platform for further investigation.

3.
Front Microbiol ; 9: 1285, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967598

RESUMO

Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers.

4.
BMC Res Notes ; 10(1): 720, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29221488

RESUMO

OBJECTIVE: Recombinant adeno-associated virus (AAV)-based vectors are characterized by their robust and safe transgene delivery. The CRISPR/Cas9 and guide RNA (gRNA) system present a promising genome-editing platform, and a recent development of a shorter Cas9 enzyme from Staphylococcus aureus (SaCas9) allows generation of high titer single AAV vectors which carry both saCas9- and gRNA-expression cassettes. Here, we used two AAV-SaCas9 vectors with distinct GFP-targeted gRNA sequences and determined the impact of AAV-SaCas9-gRNA vector treatment in a single cell clone carrying a GFP-expression cassette. RESULTS: Our results showed comparable GFP knockout efficiencies (40-50%) upon a single low-dose infection. Three consecutive transductions of 25-fold higher doses of vectors showed 80% GFP knockout efficiency. To analyze the "AAV-SaCas9-resistant cell population", we sorted the residual GFP-positive cells and assessed their permissiveness to super-infection with two AAV-Cas9-GFP vectors. We found the sorted cells were significantly more resistant to the GFP knockout mediated by the same AAV vector, but not by the other GFP-targeted AAV vector. Our data therefore demonstrate highly efficient genome-editing by the AAV-SaCas9-gRNA vector system. Differential susceptibilities of single cell-derived cells to the AAV-SaCas9-gRNA-mediated genome editing may represent a formidable barrier to achieve 100% genome editing efficiency by this vector system.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Dependovirus , Endonucleases/genética , Sequenciamento do Exoma , Edição de Genes , Vetores Genéticos , RNA Guia de Cinetoplastídeos , Staphylococcus aureus/enzimologia , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Linhagem Celular , Suscetibilidade a Doenças , Proteínas de Fluorescência Verde , Células HEK293 , Humanos
5.
FEMS Microbiol Ecol ; 92(4): fiw043, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26917781

RESUMO

The Svalbard archipelago (Spitsbergen Island) is the northernmost landmass in the European Arctic and has a variety of small- and medium-sized glaciers. The plasmidome of eleven psychrophilic strains of Variovorax spp. isolated from the ice surface of Hans and Werenskiold Glaciers of Spitsbergen Island, was defined. This analysis revealed the presence of six plasmids whose nucleotide sequences have been determined. Four of them, exhibiting high reciprocal sequence similarity, possess unique structures, since their genomes lack any recognized genes. These miniature replicons, not exceeding 1 kb in size, include pHW69V1 (746 bp), which is the smallest autonomous replicon so far identified in free-living bacteria. The miniature plasmids share no similarity with known sequences present in the databases. In silico and experimental analyses identified conserved DNA regions essential for the initiation of replication of these replicons.


Assuntos
Comamonadaceae/genética , Plasmídeos/genética , Replicon/genética , Regiões Árticas , Sequência de Bases , Temperatura Baixa , Camada de Gelo/microbiologia , Dados de Sequência Molecular , Plasmídeos/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Svalbard
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA