Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447054

RESUMO

The common bean (Phaseolus vulgaris L.) is an important nutritional source globally but is sensitive to high temperatures and thus particularly vulnerable to climate change. Derived from a breeding program at CIAT (Colombia), a heat-tolerant breeding line, named heat-tolerant Andean-type 4 (HTA4), was developed by a series of crosses of parents with a small-bean tepary genotype (Phaseolus acutifolius L.) in their pedigree, which might be the donor of heat stress (HS) tolerance. Importantly, in HTA4, the large, commercially desirable Andean-type beans was restored. To assess underlying tolerance mechanisms, HTA4, together with a heat-sensitive Colombian variety (Calima), was exposed to HS (31 °C/24 °C HS vs. 26 °C/19 °C day/night) under controlled environment conditions. Vegetative growth and photosynthetic performance were not negatively impacted by HS in either genotype, although senescence was delayed in Calima. HS during the reproductive stage caused an increase in pod number in Calima but with few fully developed seeds and many pods aborted and/or abscised. In contrast, HTA4 maintained a similar filled pod number under HS and a higher seed weight per plant. Pollen showed high sterility in Calima, with many non-viable pollen grains (24.9% viability compared to 98.4% in control) with a thicker exine and fewer starch granules under HS. Calima pollen failed to adhere to the stigma and germinate under HS. In HTA4, pollen viability was significantly higher than in Calima (71.1% viability compared to 95.4% under control), and pollen successfully germinated and formed pollen tubes in the style under HS. It is concluded that HTA4 is heat tolerant and maintains a high level of reproductive output due to its ability to produce healthy pollen that is able to adhere to the stigma.

2.
Plant J ; 114(1): 23-38, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35574650

RESUMO

Bean leaf crumple virus (BLCrV) is a novel begomovirus (family Geminiviridae, genus Begomovirus) infecting common bean (Phaseolus vulgaris L.), threatening bean production in Latin America. Genetic resistance is required to ensure yield stability and reduce the use of insecticides, yet the available resistance sources are limited. In this study, three common bean populations containing a total of 558 genotypes were evaluated in different yield and BLCrV resistance trials under natural infection in the field. A genome-wide association study identified the locus BLC7.1 on chromosome Pv07 at 3.31 Mbp, explaining 8 to 16% of the phenotypic variation for BLCrV resistance. In comparison, whole-genome regression models explained 51 to 78% of the variation and identified the same region on Pv07 to confer resistance. The most significantly associated markers were located within the gene model Phvul.007G040400, which encodes a leucine-rich repeat receptor-like kinase subfamily III member and is likely to be involved in the innate immune response against the virus. The allelic diversity within this gene revealed five different haplotype groups, one of which was significantly associated with BLCrV resistance. As the same genome region was previously reported to be associated with resistance against other geminiviruses affecting common bean, our study highlights the role of previous breeding efforts for virus resistance in the accumulation of positive alleles against newly emerging viruses. In addition, we provide novel diagnostic single-nucleotide polymorphism markers for marker-assisted selection to exploit BLC7.1 for breeding against geminivirus diseases in one of the most important food crops worldwide.


Assuntos
Estudo de Associação Genômica Ampla , Phaseolus , Resistência à Doença/genética , Melhoramento Vegetal , Genótipo , Phaseolus/genética , Folhas de Planta , Doenças das Plantas/genética
3.
Front Plant Sci ; 13: 830896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557726

RESUMO

Common bean (Phaseolus vulgaris L.) has two major origins of domestication, Andean and Mesoamerican, which contribute to the high diversity of growth type, pod and seed characteristics. The climbing growth habit is associated with increased days to flowering (DF), seed iron concentration (SdFe), nitrogen fixation, and yield. However, breeding efforts in climbing beans have been limited and independent from bush type beans. To advance climbing bean breeding, we carried out genome-wide association studies and genomic predictions using 1,869 common bean lines belonging to five breeding panels representing both gene pools and all growth types. The phenotypic data were collected from 17 field trials and were complemented with 16 previously published trials. Overall, 38 significant marker-trait associations were identified for growth habit, 14 for DF, 13 for 100 seed weight, three for SdFe, and one for yield. Except for DF, the results suggest a common genetic basis for traits across all panels and growth types. Seven QTL associated with growth habits were confirmed from earlier studies and four plausible candidate genes for SdFe and 100 seed weight were newly identified. Furthermore, the genomic prediction accuracy for SdFe and yield in climbing beans improved up to 8.8% when bush-type bean lines were included in the training population. In conclusion, a large population from different gene pools and growth types across multiple breeding panels increased the power of genomic analyses and provides a solid and diverse germplasm base for genetic improvement of common bean.

4.
PLoS One ; 16(4): e0249859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914759

RESUMO

Heat stress is a major abiotic stress factor reducing crop productivity and climate change models predict increasing temperatures in many production regions. Common bean (Phaseolus vulgaris L.) is an important crop for food security in the tropics and heat stress is expected to cause increasing yield losses. To study physiological responses and to characterize the genetics of heat stress tolerance, we evaluated the recombinant inbred line (RIL) population IJR (Indeterminate Jamaica Red) x AFR298 of the Andean gene pool. Heat stress (HS) conditions in the field affected many traits across the reproductive phase. High nighttime temperatures appeared to have larger effects than maximum daytime temperatures. Yield was reduced compared to non-stress conditions by 37% and 26% in 2016 and 2017 seasons, respectively. The image analysis tool HYRBEAN was developed to evaluate pollen viability (PolVia). A significant reduction of PolVia was observed in HS and higher viability was correlated with yield only under stress conditions. In susceptible lines the reproductive phase was extended and defects in the initiation of seed, seed fill and seed formation were identified reducing grain quality. Higher yields under HS were correlated with early flowering, high pollen viability and effective seed filling. Quantitative trait loci (QTL) analysis revealed a QTL for both pod harvest index and PolVia on chromosome Pv05, for which the more heat tolerant parent IJR contributed the positive allele. Also, on chromosome Pv08 a QTL from IJR improved PolVia and the yield component pods per plant. HS affected several traits during the whole reproductive development, from floral induction to grain quality traits, indicating a general heat perception affecting many reproductive processes. Identification of tolerant germplasm, indicator traits for heat tolerance and molecular tools will help to breed heat tolerant varieties to face future climate change effects.


Assuntos
Phaseolus/genética , Estresse Fisiológico/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/química , DNA de Plantas/metabolismo , Flores/genética , Flores/fisiologia , Resposta ao Choque Térmico/genética , Phaseolus/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal , Pólen/genética , Pólen/fisiologia , Locos de Características Quantitativas , Sementes/genética , Temperatura
5.
Front Plant Sci ; 12: 629221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777068

RESUMO

Root rot in common bean is a disease that causes serious damage to grain production, particularly in the upland areas of Eastern and Central Africa where significant losses occur in susceptible bean varieties. Pythium spp. and Fusarium spp. are among the soil pathogens causing the disease. In this study, a panel of 228 lines, named RR for root rot disease, was developed and evaluated in the greenhouse for Pythium myriotylum and in a root rot naturally infected field trial for plant vigor, number of plants germinated, and seed weight. The results showed positive and significant correlations between greenhouse and field evaluations, as well as high heritability (0.71-0.94) of evaluated traits. In GWAS analysis no consistent significant marker trait associations for root rot disease traits were observed, indicating the absence of major resistance genes. However, genomic prediction accuracy was found to be high for Pythium, plant vigor and related traits. In addition, good predictions of field phenotypes were obtained using the greenhouse derived data as a training population and vice versa. Genomic predictions were evaluated across and within further published data sets on root rots in other panels. Pythium and Fusarium evaluations carried out in Uganda on the Andean Diversity Panel showed good predictive ability for the root rot response in the RR panel. Genomic prediction is shown to be a promising method to estimate tolerance to Pythium, Fusarium and root rot related traits, indicating a quantitative resistance mechanism. Quantitative analyses could be applied to other disease-related traits to capture more genetic diversity with genetic models.

6.
Front Plant Sci ; 11: 1001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774338

RESUMO

In plant and animal breeding, genomic prediction models are established to select new lines based on genomic data, without the need for laborious phenotyping. Prediction models can be trained on recent or historic phenotypic data and increasingly available genotypic data. This enables the adoption of genomic selection also in under-used legume crops such as common bean. Beans are an important staple food in the tropics and mainly grown by smallholders under limiting environmental conditions such as drought or low soil fertility. Therefore, genotype-by-environment interactions (G × E) are an important consideration when developing new bean varieties. However, G × E are often not considered in genomic prediction models nor are these models implemented in current bean breeding programs. Here we show the prediction abilities of four agronomic traits in common bean under various environmental stresses based on twelve field trials. The dataset includes 481 elite breeding lines characterized by 5,820 SNP markers. Prediction abilities over all twelve trials ranged between 0.6 and 0.8 for yield and days to maturity, respectively, predicting new lines into new seasons. In all four evaluated traits, the prediction abilities reached about 50-80% of the maximum accuracies given by phenotypic correlations and heritability. Predictions under drought and low phosphorus stress were up to 10 and 20% improved when G × E were included in the model, respectively. Our results demonstrate the potential of genomic selection to increase the genetic gain in common bean breeding. Prediction abilities improved when more phenotypic data was available and G × E could be accounted for. Furthermore, the developed models allowed us to predict genotypic performance under different environmental stresses. This will be a key factor in the development of common bean varieties adapted to future challenging conditions.

7.
Plant Soil ; 428(1): 223-239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996486

RESUMO

AIMS: Symbiotic nitrogen fixation (SNF) contributes to improve grain yield under nitrogen (N) deficiency. Climbing beans are known to be superior to bush beans in their potential for SNF. The main objectives of this study were to: (i) quantify genotypic differences in SNF ability of climbing beans using 15N natural abundance method; (ii) identify climbing bean genotypes that combine high SNF ability with high yield potential that could serve as parents in the breeding program; and (iii) test whether δ15N in seed can be used instead of δ15N in shoot for estimating SNF ability. METHODS: 98 Climbing bean genotypes were evaluated for SNF ability in terms of nitrogen derived from the atmosphere (%Ndfa). Field trials were conducted at two locations in Colombia. RESULTS: Significant genotypic differences were observed in SNF ability. Good yielding lines with 4.6 t ha-1 fixed as much as 60% of their N (up to 92 kg of N fixed ha-1) without application of N fertilizer to soil. CONCLUSIONS: Based on evaluations from both locations, seven climbing bean lines (ENF 235, ENF 234, ENF 28, ENF 21, MAC 27, CGA 10 and PO07AT49) were identified as promising genotypes. Seed samples can be used to determine SNF ability, to select for genotypes with superior SNF ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA