Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(631): eabg8070, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138909

RESUMO

Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (ß1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing ß1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.


Assuntos
Leucemia Mieloide Aguda , Complexo de Endopeptidases do Proteassoma , Proteínas WT1 , Animais , Antígenos de Neoplasias , Epitopos , Antígeno HLA-A2 , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Camundongos , Peptídeos , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Receptores de Antígenos de Linfócitos T , Proteínas WT1/uso terapêutico
2.
Bone ; 113: 77-88, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753718

RESUMO

The tumor-cell microenvironment is recognized as a dynamic place where critical cell interactions occur and play an important role in altering tumorigenesis. While many studies have investigated the effects of cellular cross-talk within distinct tumor microenvironments, these interactions have yet to be fully examined in bone. It is well-established that many common cancers metastasize to bone, resulting in the development of tumor-induced bone disease (TIBD), a multi-facetted illness that is driven by complex cell interactions within the bone marrow. Our group has previously published that myeloid progenitor cells expand in the presence of tumors in bone, aligning with the notion that myeloid cells can act as tumor promotors. Several groups, including ours, have established that transforming growth factor ß (TGF-ß), an abundant growth factor in bone, can regulate both TIBD and myeloid expansion. TGF-ß inhibitors have been shown to increase bone volume, decrease bone destruction, and reduce but not eliminate tumor. Therefore, we hypothesize that inhibiting TGF-ß will reduce myeloid expansion leading to a reduction of tumor burden in bone and osteoclast-mediated bone loss, causing to an overall reduction in TIBD. To address this hypothesis, two different mouse models of breast cancer bone colonization were pre-treated with the TGF-ß neutralizing antibody, 1D11, prior to tumor inoculation (athymic: MDA-MB-231, BALB/c: 4T1) and continuously treated until sacrifice. Additionally, a genetically modified mouse model with a myeloid specific deletion of transforming growth factor beta receptor II (TGF-ßRII) (TGF-ßRIIMyeKO) was utilized in our studies. Systemic inhibition of TGF-ß lead to fewer osteolytic lesions, and reduced tumor burden in bone as expected from previous studies. Additionally, early TGF-ß inhibition affected expansion of distinct myeloid populations and shifted the cytokine profile of pro-tumorigenic factors in bone, 4T1 tumor cells, and bone-marrow derived macrophages. Similar observations were seen in tumor-bearing TGF-ßRIIMyeKO mice, where these mice contained fewer bone lesions and significantly less tumor burden in bone, suggesting that TGF-ß inhibition regulates myeloid expansion leading to a significant reduction in TIBD.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/secundário , Células Progenitoras Mieloides/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Animais , Feminino , Humanos , Camundongos , Camundongos Knockout
3.
Curr Osteoporos Rep ; 14(4): 151-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27255469

RESUMO

Bone metastatic disease remains a significant and frequent problem for cancer patients that can lead to increased morbidity and mortality. Unfortunately, despite decades of research, bone metastases remain incurable. Current studies have demonstrated that many properties and cell types within the bone and bone marrow microenvironment contribute to tumor-induced bone disease. Furthermore, they have pointed to the importance of understanding how tumor cells interact with their microenvironment in order to help improve both the development of new therapeutics and the prediction of response to therapy.


Assuntos
Células da Medula Óssea/citologia , Neoplasias Ósseas/secundário , Osso e Ossos/citologia , Microambiente Tumoral , Linfócitos B , Medula Óssea/irrigação sanguínea , Medula Óssea/metabolismo , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/metabolismo , Osso e Ossos/irrigação sanguínea , Osso e Ossos/metabolismo , Microambiente Celular , Fibroblastos , Humanos , Células Matadoras Naturais , Macrófagos , Células Supressoras Mieloides , Osteoblastos , Osteoclastos , Osteócitos , Linfócitos T
4.
Biomed Res Int ; 2014: 875305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054153

RESUMO

Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Células-Tronco Mesenquimais/citologia , Osso e Ossos/patologia , Fibroblastos/citologia , Humanos , Sistema Imunitário , Metástase Neoplásica , Neoplasias/patologia , Osteoblastos/citologia , Osteoclastos/citologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA